125 research outputs found

    Molecular origin of enhanced proton conductivity in anhydrous ionic systems

    Get PDF
    YesIonic systems with enhanced proton conductivity are widely viewed as promising electrolytes in fuel cells and batteries. Nevertheless, a major challenge toward their commercial applications is determination of the factors controlling the fast proton hopping in anhydrous conditions. To address this issue, we have studied novel proton-conducting materials formed via a chemical reaction of lidocaine base with a series of acids characterized by a various number of proton-active sites. From ambient and high pressure experimental data, we have found that there are fundamental differences in the conducting properties of the examined salts. On the other hand, DFT calculations revealed that the internal proton hopping within the cation structure strongly affects the pathways of mobility of the charge carrier. These findings offer a fresh look on the Grotthuss-type mechanism in protic ionic glasses as well as provide new ideas for the design of anhydrous materials with exceptionally high proton conductivity

    Observation of highly decoupled conductivity in protic ionic conductors

    Get PDF
    YesIonic liquids (ILs) are key materials for the development of a wide range of emerging technologies. Protic ionic liquids, an important class of ILs, have long been envisioned as promising anhydrous electrolytes for fuel cells. It is well known that in comparison to all other cations, protons exhibit abnormally high conductivity in water. Such superprotonic dynamics was expected in protic ionic conductors as well. However, many years of extensive studies led to the disappointing conclusion that this is not the case and most protic ionic liquids display subionic behavior. Therefore, the relatively low conductivity seems to be the main obstacle for the application of protic ionic liquids in fuel cells. Using dielectric spectroscopy, herein we report the observation of highly decoupled conductivity in a newly synthesized protic ionic conductor. We show that its proton transport is strongly decoupled from the structural relaxation, in terms of both temperature dependence and characteristic rates. This finding offers a fresh look on the charge transport mechanism in PILs and also provides new ideas for design of anhydrous materials with exceptionally high proton conductivity.National Science Centre within the framework of the Opus project (Grant No. DEC 2011/03/B/ST3/02072). Financial assistance from FNP START. The LDRD Program of ORNL, managed by UT-Battelle, LLC, for the U.S. DOE. Support from the NSF under grant CHE-1213444

    Molecular dynamics and physical stability of amorphous nimesulide drug and its binary drug-polymer systems

    Get PDF
    yesIn this paper we study the effectiveness of three well known polymers: inulin, Soluplus and PVP in stabilizing amorphous form of nimesulide (NMS) drug. The re-crystallization tendency of pure drug as well as measured drug-polymer systems were examined at isothermal conditions by using broadband dielectric spectroscopy (BDS), and at non-isothermal conditions by differential scanning calorimetry (DSC). Our investigation has shown that the crystallization half-life time of pure NMS at 328 K is equal to 33 minutes. We found that this time can be prolonged to 40 years after adding to NMS 20% of PVP polymer. This polymer proved to be the best NMS’s stabilizer, while the worst stabilization effect was found after adding the inulin to NMS. Additionally, our DSC, BDS and FTIR studies indicate that for suppression of NMS’s re-crystallization in NMS-PVP system, the two mechanisms are responsible: the polymeric steric hindrances as well as the antiplastization effect excerted by the excipient.The authors J.K., Z.W., K.G. and M.P., are grateful for the financial support received within the Project No. 2015/16/W/NZ7/00404 (SYMFONIA 3) from the National Science Centre, Poland. H.M. and L.T. are supported by Science Foundation Ireland under grant No. 12/RC/2275 (Synthesis and Solid State Pharmaceuticals Centre)

    Enhanced pharmacological efficacy of sumatriptan due to modification of its physicochemical properties by inclusion in selected cyclodextrins

    Get PDF
    The study focused on the pharmacological action of sumatriptan, in particular its antiallodynic and antihyperalgesic properties, as an effect of cyclodextrinic inclusion of sumatriptan, resulting in changes of its physicochemical qualities such as dissolution and permeability through artificial biological membranes, which had previously been examined in vitro in a gastro-intestinal model. The inclusion of sumatriptan into β-cyclodextrin and 2-hydroxylpropylo-β-cyclodextrin by kneading was confirmed with the use of spectral (fourier-transform infrared spectroscopy (FT-IR); solid state nuclear magnetic resonance spectroscopy with magic angle spinning condition, 1H and 13C MAS NMR) and thermal (differential scanning calorimetry (DSC)) methods. A precise indication of the domains of sumatriptan responsible for its interaction with cyclodextrin cavities was possible due to a theoretical approach to the analysis of experimental spectra. A high-performance liquid chromatography with a diode-array detector method (HPLC-DAD) was employed to determine changes in the concentration of sumatriptan during dissolution and permeability experiments. The inclusion of sumatriptan in complex with cyclodextrins was found to significantly modify its dissolution profiles by increasing the concentration of sumatriptan in complexed form in an acceptor solution compared to in its free form. Following complexation, sumatriptan manifested an enhanced ability to permeate through artificial biological membranes in a gastro-intestinal model for both cyclodextrins at all pH values. As a consequence of the greater permeability of sumatriptan and its increased dissolution from the complexes, an improved pharmacological response was observed when cyclodextrin complexes were applied

    Predicting Crystallization of Amorphous Drugs with Terahertz Spectroscopy.

    Get PDF
    There is a controversy about the extent to which the primary and secondary dielectric relaxations influence the crystallization of amorphous organic compounds below the glass transition temperature. Recent studies also point to the importance of fast molecular dynamics on picosecond-to-nanosecond time scales with respect to the glass stability. In the present study we provide terahertz spectroscopy evidence on the crystallization of amorphous naproxen well below its glass transition temperature and confirm the direct role of Johari-Goldstein (JG) secondary relaxation as a facilitator of the crystallization. We determine the onset temperature Tβ above which the JG relaxation contributes to the fast molecular dynamics and analytically quantify the level of this contribution. We then show there is a strong correlation between the increase in the fast molecular dynamics and onset of crystallization in several chosen amorphous drugs. We believe that this technique has immediate applications to quantify the stability of amorphous drug materials.JS and JAZ would like to acknowledge the UK Engineering and Physical Sciences Research Council for funding (EP/J007803/1).This is the final version of the article. It first appeared from ACS at http://dx.doi.org/10.1021/acs.molpharmaceut.5b0033

    Genome-wide meta-analysis identifies five new susceptibility loci for pancreatic cancer.

    Get PDF
    In 2020, 146,063 deaths due to pancreatic cancer are estimated to occur in Europe and the United States combined. To identify common susceptibility alleles, we performed the largest pancreatic cancer GWAS to date, including 9040 patients and 12,496 controls of European ancestry from the Pancreatic Cancer Cohort Consortium (PanScan) and the Pancreatic Cancer Case-Control Consortium (PanC4). Here, we find significant evidence of a novel association at rs78417682 (7p12/TNS3, P = 4.35 × 10-8). Replication of 10 promising signals in up to 2737 patients and 4752 controls from the PANcreatic Disease ReseArch (PANDoRA) consortium yields new genome-wide significant loci: rs13303010 at 1p36.33 (NOC2L, P = 8.36 × 10-14), rs2941471 at 8q21.11 (HNF4G, P = 6.60 × 10-10), rs4795218 at 17q12 (HNF1B, P = 1.32 × 10-8), and rs1517037 at 18q21.32 (GRP, P = 3.28 × 10-8). rs78417682 is not statistically significantly associated with pancreatic cancer in PANDoRA. Expression quantitative trait locus analysis in three independent pancreatic data sets provides molecular support of NOC2L as a pancreatic cancer susceptibility gene

    Genome-wide association study identifies multiple susceptibility loci for pancreatic cancer

    Get PDF
    We performed a multistage genome-wide association study including 7,683 individuals with pancreatic cancer and 14,397 controls of European descent. Four new loci reached genome-wide significance: rs6971499 at 7q32.3 (LINC-PINT, per-allele odds ratio (OR) = 0.79, 95% confidence interval (CI) 0.74-0.84, P = 3.0 x 10(-12)), rs7190458 at 16q23.1 (BCAR1/CTRB1/CTRB2, OR = 1.46, 95% CI 1.30-1.65, P = 1.1 x 10(-10)), rs9581943 at 13q12.2 (PDX1, OR = 1.15, 95% CI 1.10-1.20, P = 2.4 x 10(-9)) and rs16986825 at 22q12.1 (ZNRF3, OR = 1.18, 95% CI 1.12-1.25, P = 1.2 x 10(-8)). We identified an independent signal in exon 2 of TERT at the established region 5p15.33 (rs2736098, OR = 0.80, 95% CI 0.76-0.85, P = 9.8 x 10(-14)). We also identified a locus at 8q24.21 (rs1561927, P = 1.3 x 10(-7)) that approached genome-wide significance located 455 kb telomeric of PVT1. Our study identified multiple new susceptibility alleles for pancreatic cancer that are worthy of follow-up studies

    Lack of association of CD44-rs353630 and CHI3L2-rs684559 with pancreatic ductal adenocarcinoma survival.

    Get PDF
    Although pancreatic ductal adenocarcinoma (PDAC) survival is poor, there are differences in patients' response to the treatments. Detection of predictive biomarkers explaining these differences is of the utmost importance. In a recent study two genetic markers (CD44-rs353630 and CHI3L2-rs684559) were reported to be associated with survival after PDAC resection. We attempted to replicate the associations in 1856 PDAC patients (685 resected with stage I/II) from the PANcreatic Disease ReseArch (PANDoRA) consortium. We also analysed the combined effect of the two genotypes in order to compare our results with what was previously reported. Additional stratified analyses considering TNM stage of the disease and whether the patients received surgery were also performed. We observed no statistically significant associations, except for the heterozygous carriers of CD44-rs353630, who were associated with worse OS (HR = 5.01; 95% CI 1.58-15.88; p = 0.006) among patients with stage I disease. This association is in the opposite direction of those reported previously, suggesting that data obtained in such small subgroups are hardly replicable and should be considered cautiously. The two polymorphisms combined did not show any statistically significant association. Our results suggest that the effect of CD44-rs353630 and CHI3L2-rs684559 cannot be generalized to all PDAC patients
    corecore