4 research outputs found
THE NEW APPROACH FOR STUDY THE GROWTH REGULATION OF VARIOUS FORMS OF CHILDREN HEMANGIOMA
The aim of our study was the identification of the thermostable protein complexes in the cells of infant’s hemangiomas.
In order to identify the TPC from children capillary hemangioma components the TPC from adult rat pancreas as a control were used. In compare to control sample the TPC from the children capillary hemangioma is different in the quantitative content, as its low molecular weight (12-17 KD), as well as a relatively high-molecular component. The effect of the TPC from Children capillary hemangioma on the proliferative activity of the brain cells of the infant rats also were studied. It has been determined that the intraperitoneal injection of mentioned TPC decreases the mitotic activity of heterotypic cells (rat brain)
gSeaGen: The KM3NeT GENIE-based code for neutrino telescopes
Program summary
Program Title: gSeaGen
CPC Library link to program files: http://dx.doi.org/10.17632/ymgxvy2br4.1
Licensing provisions: GPLv3
Programming language: C++
External routines/libraries: GENIE [1] and its external dependencies. Linkable to MUSIC [2] and PROPOSAL
[3].
Nature of problem: Development of a code to generate detectable events in neutrino telescopes, using
modern and maintained neutrino interaction simulation libraries which include the state-of-the-art
physics models. The default application is the simulation of neutrino interactions within KM3NeT [4].
Solution method: Neutrino interactions are simulated using GENIE, a modern framework for Monte
Carlo event generators. The GENIE framework, used by nearly all modern neutrino experiments, is
considered as a reference code within the neutrino community.
Additional comments including restrictions and unusual features: The code was tested with GENIE version
2.12.10 and it is linkable with release series 3. Presently valid up to 5 TeV. This limitation is not intrinsic
to the code but due to the present GENIE valid energy range.
References:
[1] C. Andreopoulos at al., Nucl. Instrum. Meth. A614 (2010) 87.
[2] P. Antonioli et al., Astropart. Phys. 7 (1997) 357.
[3] J. H. Koehne et al., Comput. Phys. Commun. 184 (2013) 2070.
[4] S. Adrián-MartÃnez et al., J. Phys. G: Nucl. Part. Phys. 43 (2016) 084001.The gSeaGen code is a GENIE-based application developed to efficiently generate high statistics samples
of events, induced by neutrino interactions, detectable in a neutrino telescope. The gSeaGen code is able
to generate events induced by all neutrino flavours, considering topological differences between tracktype
and shower-like events. Neutrino interactions are simulated taking into account the density and
the composition of the media surrounding the detector. The main features of gSeaGen are presented
together with some examples of its application within the KM3NeT project.French National Research Agency (ANR)
ANR-15-CE31-0020Centre National de la Recherche Scientifique (CNRS)European Union (EU)Institut Universitaire de France (IUF), FranceIdEx program, FranceUnivEarthS Labex program at Sorbonne Paris Cite
ANR-10-LABX-0023
ANR-11-IDEX-000502Paris Ile-de-France Region, FranceShota Rustaveli National Science Foundation of Georgia (SRNSFG), Georgia
FR-18-1268German Research Foundation (DFG)Greek Ministry of Development-GSRTIstituto Nazionale di Fisica Nucleare (INFN)Ministry of Education, Universities and Research (MIUR)PRIN 2017 program Italy
NAT-NET 2017W4HA7SMinistry of Higher Education, Scientific Research and Professional Training, MoroccoNetherlands Organization for Scientific Research (NWO)
Netherlands GovernmentNational Science Centre, Poland
2015/18/E/ST2/00758National Authority for Scientific Research (ANCS), RomaniaMinisterio de Ciencia, Innovacion, Investigacion y Universidades (MCIU): Programa Estatal de Generacion de Conocimiento, Spain (MCIU/FEDER)
PGC2018-096663-B-C41
PGC2018-096663-A-C42
PGC2018-096663-BC43
PGC2018-096663-B-C44Severo Ochoa Centre of Excellence and MultiDark Consolider (MCIU), Junta de Andalucia, Spain
SOMM17/6104/UGRGeneralitat Valenciana: Grisolia, Spain
GRISOLIA/2018/119GenT, Spain
CIDEGENT/2018/034La Caixa Foundation
LCF/BQ/IN17/11620019EU: MSC program, Spain
71367
Analysis of Solar Activity and Earth’s Climate
In this paper we study the solar activity and its influence on the earth’s climate by analyzing the following data (averaged monthly): Wolf Number, Total Solar Irradiance (TSI) and Global Ocean Temperature Anomalies from 1974 to 2021. We use the following data analysis methods: linear correlation analysis, Recurrence Quantification Analysis (RQA) and Cross Wavelet Transform