44 research outputs found

    Improving bycatch mitigation measures for marine megafauna in Zanzibar, Tanzania

    Get PDF
    This study was conducted to explore the governance processes and socio-economic factors relevant to the potential implementation of bycatch mitigation for various vulnerable marine megafauna (rays, sharks, marine mammals and turtles) in Zanzibar, Tanzania. Questionnaire-based interviews were conducted between February and April 2017 with fishers (n= 240) at eight landing sites. One focus group discussion was held in each site and eleven key informant interviews were carried out. The study showed that current measures to manage bycatch rates are not explicit; no rules govern rays and sharks bycatch; and rules regarding marine mammal and sea turtle bycatch are poorly enforced. Binary logistic regression was used to determine the effect of five selected socio-economic factors (education, age, proportional fishing income, fishing experience, and the number of adults who bring income into the household) on the willingness of fishers to participate in potential future bycatch mitigation measures for marine megafauna. The results indicate that only one factor (the number of adults who bring income into the household) had any significant effect (p=0.016). These findings could benefit the future governance and management of marine megafauna in Zanzibar through a better understanding of what mitigation measures are more likely to be supported

    The state of finance in the drylands: Formal and informal finance in Kenya, Mali and Somalia

    Get PDF

    The enhancement of heavy metal removal from polluted river water treatment by integrated carbon-aluminium electrodes using electrochemical method

    Get PDF
    The heavy metal removal enhancement from polluted river water was investigated using two types of electrodes consist of integrated carbon-aluminium and a conventional aluminium plate electrode at laboratory-scale experiments. In the integrated electrode systems, the aluminium electrode surface was coated with carbon using mixed slurry containing carbon black, polyvinyl acetate and methanol. The electrochemical treatment was conducted on the parameter condition of 90V applied voltage, 3cm of electrode distance and 60 minutes of electrolysis operational time. Surface of both electrodes was investigated for pre and post electrolysis treatment by using SEM-EDX analytical technique. Comparison between both of the electrode configuration exhibits that more metals were accumulated on carbon integrated electrode surfaces for both anode and cathode, and more heavy metals were detected on the cathode. The atomic percentage of metals distributed on the cathode conventional electrode surface consist of Al (94.62%), Zn (1.19%), Mn (0.73%), Fe (2.81%) and Cu (0.64%), while on the anode contained O (12.08%), Al (87.63%) and Zn (0.29%). Meanwhile, cathode surface of integrated electrode was accumulated with more metals; O (75.40%), Al (21.06%), Zn (0.45%), Mn (0.22), Fe (0.29%), Cu (0.84%), Pb (0.47%), Na (0.94%), Cr (0.08%), Ni (0.02%) and Ag (0.22%), while on anode contain Al (3.48%), Fe (0.49 %), C (95.77%), and Pb (0.26%). According to this experiment, it was found that integrated carbon-aluminium electrodes have a great potential to accumulate more heavy metal species from polluted water compare to the conventional aluminium electrode. Here, heavy metal accumulation process obviously very significant on the cathode surface

    Efect of maleated anhydride on mechanical properties of rice husk filler reinforced PLA Matrix Polymer Composite

    Get PDF
    Polylactic acid (PLA) formulated from corn starch has a bright potential to replace the non-renewable petroleum-based plastics. The combination of PLA and natural fbre has gained interest due to its unique performance, as reported in many researches and industries. Meanwhile, rice husk produced as the by-product of rice milling can be utilised, unless it is turned completely into waste. Therefore, in the present study, the rice husk powder (RHP) was used as a fller in the PLA, so to determine the infuence of the fller loading on the mechanical properties of the PLA composite. A coupling agent was selected for treatment from two options, i.e., maleic anhydride polypropylene (MAPP) and maleic anhydride polyethylene (MAPE), by applying the agents with various loading contents, such as 2, 4 and 6 wt%. The composite was fabricated by using the hot compression machine. Both the treated and untreated RHP–PLA composites were characterised via the tensile, fexural and impact strength tests. The increase in the RHP loading content led to the decrease in the tensile and fexural strengths. The applications of the coupling agents (MAPE and MAPP) did not improve the tensile and impact strengths, but the fexural strength was enhanced

    Cancer risks associated with germline PALB2 pathogenic variants: An international study of 524 families

    Get PDF
    PURPOSE To estimate age-specific relative and absolute cancer risks of breast cancer and to estimate risks of ovarian, pancreatic, male breast, prostate, and colorectal cancers associated with germline PALB2 pathogenic variants (PVs) because these risks have not been extensively characterized. METHODS We analyzed data from 524 families with PALB2 PVs from 21 countries. Complex segregation analysis was used to estimate relative risks (RRs; relative to country-specific population incidences) and absolute risks of cancers. The models allowed for residual familial aggregation of breast and ovarian cancer and were adjusted for the family-specific ascertainment schemes. RESULTS We found associations between PALB2 PVs and risk of female breast cancer (RR, 7.18; 95% CI, 5.82 to 8.85; P = 6.5 × 10-76), ovarian cancer (RR, 2.91; 95% CI, 1.40 to 6.04; P = 4.1 × 10-3), pancreatic cancer (RR, 2.37; 95% CI, 1.24 to 4.50; P = 8.7 × 10-3), and male breast cancer (RR, 7.34; 95% CI, 1.28 to 42.18; P = 2.6 3 1022). There was no evidence for increased risks of prostate or colorectal cancer. The breast cancer RRs declined with age (P for trend = 2.0 × 10-3). After adjusting for family ascertainment, breast cancer risk estimates on the basis of multiple case families were similar to the estimates from families ascertained through population-based studies (P for difference = .41). On the basis of the combined data, the estimated risks to age 80 years were 53% (95% CI, 44% to 63%) for female breast cancer, 5% (95% CI, 2% to 10%) for ovarian cancer, 2%-3% (95% CI females, 1% to 4%; 95% CI males, 2% to 5%) for pancreatic cancer, and 1% (95% CI, 0.2% to 5%) for male breast cancer. CONCLUSION These results confirm PALB2 as a major breast cancer susceptibility gene and establish substantial associations between germline PALB2 PVs and ovarian, pancreatic, and male breast cancers. These findings will facilitate incorporation of PALB2 into risk prediction models and optimize the clinical cancer risk management of PALB2 PV carriers

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    Sealing of polymeric-microfluidic devices by using high frequency electromagnetic field and screen printing technique

    No full text
    This paper describes a new approach of sealing polymeric-microfluidic devices using high frequency electromagnetic field and solvent based polyaniline (PAni). The bonding is achieved by patterning very thin layers of solvent based polyaniline features at the polymer joint interface by using screen printing technique. The absorbed electromagnetic energy is then converted into heat, facilitating a localized thermal bonding of two polymer substrates (PMMA-PMMMA and PC-PC). For a successful outcome, the selection of materials for the substrate and the bonding is important. Polymethymethacrylate (PMMA) and polycarbonate (PC) are chosen, as they are virtually transparent to microwaves. The bonding material is a conductive polymer (polyaniline), which consists basically of conductive solid nano-particles in an organic solvent. A coaxial open-ended probe was used to study the dielectric properties at 2.45 GHz of the polyaniline, PMMA and PC at a range of temperatures up to 120 degrees C. The measurements confirm that a difference in the dielectric loss factor of the polymer substrates and the polyaniline. Microfluidic channels of 100 and 200 mu m wide were fabricated by using lithography technique then prepared a master mold for hot embossing the samples. The sealing was achieved by using a microwave power of 300 W and heating time of 35 and 40 s for PMMA and PC substrates, respectively. The patterned polyaniline structure at the polymer interface was evaluated by using laser scanning confocal microscope (LSCM). Bonding efficiency of the sealed microfluidic channels were evaluated by using techniques such as interface evaluation or cross-sectioning of the sealed devices, peel off test, bond strength and leak test

    Rapid microwave welding of two polymethylmethacrylate (PMMA) substrates

    No full text
    The use of conductive polymers in welding of plastics offers the possibility of understanding and developing new welding techniques. Polyaniline, which absorbs the microwave energy and converts it to heat to perform the welding process, can be deposited and patterned locally. In this paper conductive polyaniline in a liquid form and single mode microwave technology was used to weld two polymethmethyacrylate (PMMA) substrates. These rapidly welded samples were then shear tested to determine the joint strength as a function of processing parameters such as heating time, microwave power, applied pressure, and quantity of polyaniline. During welding both the processing and operating parameters were varied in order to determine their effect on the resulting bond strength. It was found that increasing the microwave power, heating time and amount of polyaniline increased the joint strength. A heating time of 15 s and increasing power from 100 to 300 Watts increased joint strength from 1.7 to 6.8 MPa. The joint strength testing technique of a single lap shear was chosen and samples were prepared according to ASTM D 3164-97. The dielectric properties of polyaniline and PMMA over a range of 18°C to 110°C at the frequency of 2.45 GHz are reported
    corecore