265 research outputs found

    Fine mapping of two major QTLs conferring resistance to powdery mildew in tomato

    Get PDF
    Tomato (Solanum lycopersicum) is the most cultivated crop in the Solanaceae family and is a host for Oidium neolycopersici, the cause agent of powdery mildew disease. In wild species of tomato, genes (Ol-1–Ol-6) for monogenic resistance have been identified. Moreover, three quantitative resistance loci (QRLs), namely Ol-qtl1, Ol-qtl2 and Ol-qtl3, have been mapped in Solanum neorickii G1.1601. In this work, we developed several advanced backcross populations in order to fine-map these Ol-qtls. Resistant lines harboring individual Ol-qtl were produced and used in recombinant screening. Ten recombinants were identified in chromosomal regions carrying Ol-qtl1s. The recombinant individuals were used to produce recombinant families (RFs). By screening these RFs with molecular markers and testing them with O. neolycopersici, we could localize Ol-qtl1 in a region of about 2.3 Mbp on the long arm of chromosome 6 and Ol-qtl2 in a region of 2.5 Mbp on the short arm of chromosome 12. On the other hand, the presence of Ol-qtl3 locus was not confirmed in this study. The fine-mapping results further demonstrated the co-localization between Ol-qtls and genes for monogenic resistance; the Ol-qtl1 interval contains the Ol-1 gene and the Ol-qtl2 interval harbors the Lv gene that confers monogenic resistance to Leveillula taurica, another species of tomato powdery mildew

    Preasymptotic Convergence of Randomized Kaczmarz Method

    Get PDF
    Kaczmarz method is one popular iterative method for solving inverse problems, especially in computed tomography. Recently, it was established that a randomized version of the method enjoys an exponential convergence for well-posed problems, and the convergence rate is determined by a variant of the condition number. In this work, we analyze the preasymptotic convergence behavior of the randomized Kaczmarz method, and show that the low-frequency error (with respect to the right singular vectors) decays faster during first iterations than the high-frequency error. Under the assumption that the inverse solution is smooth (e.g., sourcewise representation), the result explains the fast empirical convergence behavior, thereby shedding new insights into the excellent performance of the randomized Kaczmarz method in practice. Further, we propose a simple strategy to stabilize the asymptotic convergence of the iteration by means of variance reduction. We provide extensive numerical experiments to confirm the analysis and to elucidate the behavior of the algorithms.Comment: 20 page

    Указ президента України “Про проведення Всеукраїнської молодіжної акції “Пам’ятати. Відродити. Зберегти”

    Get PDF
    Genetic dissection of disease susceptibility in Arabidopsis to powdery and downy mildew has identified multiple susceptibility (S) genes whose impairment results in disease resistance. Although several of these S-genes have been cloned and characterized in more detail it is unknown to which degree their function in disease susceptibility is conserved among different plant species. Moreover, it is unclear whether impairment of such genes has potential in disease resistance breeding due to possible fitness costs associated with impaired alleles. Here we show that the Arabidopsis PMR4 and DMR1, genes encoding a callose synthase and homoserine kinase respectively, have functional orthologs in tomato with respect to their S-gene function. Silencing of both genes using RNAi resulted in resistance to the tomato powdery mildew fungus Oidium neolycopersici. Resistance to O. neolycopersici by SlDMR1 silencing was associated with severely reduced plant growth whereas SlPMR4 silencing was not. SlPMR4 is therefore a suitable candidate gene as target for mutagenesis to obtain alleles that can be deployed in disease resistance breeding of tomato

    Genetics and molecular mechanisms of resistance to powdery mildews in tomato (Solanum lycopersicum) and its wild relatives

    Get PDF
    Powdery mildews (PMs) cause disease in a wide range of plant species including important crops. Taking tomato as an example, here we review findings on the genetic basis and mechanisms of plant resistance to PMs. First, we present a summary of our research on tomato resistance to two PM species, with the focus on Oidium neolycopersici. We discuss the genetics of resistance to this pathogen in tomato. Then, we compare different forms of resistance mediated by different resistance genes based on molecular and cytological data. Also, we provide a comparison between these resistance genes in tomato with those in barley, Arabidopsis and wheat, in order to present a model for the genetic basis of resistance to PMs in plants. We try to accommodate these resistance mechanisms in the current model of plant innate immunity. At the end we discuss possibilities to translate these findings to practical approaches in breeding for resistance to PMs in crops

    Baseline Q-Wave Surpasses Time From Symptom Onset as a Prognostic Marker in ST-Segment Elevation Myocardial Infarction Patients Treated With Primary Percutaneous Coronary Intervention

    Get PDF
    ObjectivesWe assessed the incremental value of baseline Q waves over time from symptom onset as a marker of clinical outcome in ST-segment elevation myocardial infarction (STEMI).BackgroundTime from symptom onset is a central focus in STEMI patients. The presence of Q waves on the baseline electrocardiogram (ECG) has been suggested to be of incremental value to time from symptom onset in evaluating clinical outcomes.MethodsWe evaluated baseline Q waves and ST-segment resolution 30 min after primary percutaneous intervention (PCI) ECGs in 4,530 STEMI patients without prior infarction. Additionally, peak biomarkers; 90-day mortality; and the composite of death, congestive heart failure (CHF), or cardiogenic shock were assessed.ResultsFifty-six percent of patients had baseline Q waves: they were older, more frequently male and diabetic, and had a more advanced Killip class. Patients with baseline Q waves had greater mortality and a higher composite rate of death, CHF, and shock versus patients without baseline Q waves at 90 days (5.3% vs. 2.1% and 12.1% vs. 4.8%, respectively, both p < 0.001). Complete ST-segment resolution was highest, whereas 90-day mortality and the composite outcome were lowest among those randomized ≤3 h without baseline Q waves. After multivariable adjustment, baseline Q-wave but not time from symptom onset was significantly associated with a 78% relative increase in the hazard of 90-day mortality and a 90% relative increase in the hazard of death, shock, and CHF.ConclusionsBaseline Q waves in STEMI patients treated with primary PCI provide an independent prognostic marker of clinical outcome. These data might be useful in designing future clinical trials as well as in evaluating patients for triage and potential transfer for planned primary PCI. (Pexelizumab in Conjunction With Angioplasty in Acute Myocardial Infarction [APEX-AMI]; NCT00091637

    The Reproducibility of Lists of Differentially Expressed Genes in Microarray Studies

    Get PDF
    Reproducibility is a fundamental requirement in scientific experiments and clinical contexts. Recent publications raise concerns about the reliability of microarray technology because of the apparent lack of agreement between lists of differentially expressed genes (DEGs). In this study we demonstrate that (1) such discordance may stem from ranking and selecting DEGs solely by statistical significance (P) derived from widely used simple t-tests; (2) when fold change (FC) is used as the ranking criterion, the lists become much more reproducible, especially when fewer genes are selected; and (3) the instability of short DEG lists based on P cutoffs is an expected mathematical consequence of the high variability of the t-values. We recommend the use of FC ranking plus a non-stringent P cutoff as a baseline practice in order to generate more reproducible DEG lists. The FC criterion enhances reproducibility while the P criterion balances sensitivity and specificity

    What is quantitative plant biology?

    Get PDF
    Quantitative plant biology is an interdisciplinary field that builds on a long history of biomathematics and biophysics. Today, thanks to high spatiotemporal resolution tools and computational modelling, it sets a new standard in plant science. Acquired data, whether molecular, geometric or mechanical, are quantified, statistically assessed and integrated at multiple scales and across fields. They feed testable predictions that, in turn, guide further experimental tests. Quantitative features such as variability, noise, robustness, delays or feedback loops are included to account for the inner dynamics of plants and their interactions with the environment. Here, we present the main features of this ongoing revolution, through new questions around signalling networks, tissue topology, shape plasticity, biomechanics, bioenergetics, ecology and engineering. In the end, quantitative plant biology allows us to question and better understand our interactions with plants. In turn, this field opens the door to transdisciplinary projects with the society, notably through citizen science.Peer reviewe

    ZED1-related kinase 13 is required for resistance against Pseudoidium neolycopersici in Arabidopsis accession Bla-6

    Get PDF
    To explore specific components of resistance against the tomato-adapted powdery mildew pathogen Pseudoidium neolycopersici (On) in the model plant Arabidopsis, we performed a disease assay in 123 accessions. When testing the resistance in the F1 from crossings between resistant accessions with susceptible Col-0 or Sha, only the progeny of the cross between accession Bla-6 and Col-0 displayed a completely resistant phenotype. The resistance in Bla-6 is known to be specific for Pseudoidium neolycopersici. QTL analysis and fine-mapping through several rounds of recombinant screenings allowed us to locate a major resistance QTL in an interval on chromosome 1, containing two candidate genes and an intergenic insertion. Via CRISPR/Cas9 targeted mutagenesis, we could show that knocking out the ZED-1 RELATED KINASE 13 (ZRK13) gene compromised the On resistance in Bla-6. Several polymorphisms are observed in the ZRK13 allelic variant of Bla-6 when compared to the Col-0 protein

    MoSfl1 Is Important for Virulence and Heat Tolerance in Magnaporthe oryzae

    Get PDF
    The formation of appressoria, specialized plant penetration structures of Magnaporthe oryzae, is regulated by the MST11-MST7-PMK1 MAP kinase cascade. One of its downstream transcription factor, MST12, is important for penetration and invasive growth but dispensable for appressorium formation. To identify additional downstream targets that are regulated by Pmk1, in this study we performed phosphorylation assays with a protein microarray composed of 573 M. oryzae transcription factor (TF) genes. Three of the TF genes phosphorylated by Pmk1 in vitro were further analyzed by coimmunoprecipitation assays. One of them, MoSFL1, was found to interact with Pmk1 in vivo. Like other Sfl1 orthologs, the MoSfl1 protein has the HSF-like domain. When expressed in yeast, MoSFL1 functionally complemented the flocculation defects of the sfl1 mutant. In M. oryzae, deletion of MoSFl1 resulted in a significant reduction in virulence on rice and barley seedlings. Consistent with this observation, the Mosfl1 mutant was defective in invasive growth in penetration assays with rice leaf sheaths. In comparison with that of vegetative hyphae, the expression level of MoSFL1 was increased in appressoria and infected rice leaves. The Mosfl1 mutant also had increased sensitivity to elevated temperatures. In CM cultures of the Mosfl1 and pmk1 mutants grown at 30°C, the production of aerial hyphae and melanization were reduced but their growth rate was not altered. When assayed by qRT-PCR, the transcription levels of the MoHSP30 and MoHSP98 genes were reduced 10- and 3-fold, respectively, in the Mosfl1 mutant. SFL1 orthologs are conserved in filamentous ascomycetes but none of them have been functionally characterized in non-Saccharomycetales fungi. MoSfl1 has one putative MAPK docking site and three putative MAPK phosphorylation sites. Therefore, it may be functionally related to Pmk1 in the regulation of invasive growth and stress responses in M. oryzae

    EBV Promotes Human CD8+ NKT Cell Development

    Get PDF
    The reports on the origin of human CD8+ Vα24+ T-cell receptor (TCR) natural killer T (NKT) cells are controversial. The underlying mechanism that controls human CD4 versus CD8 NKT cell development is not well-characterized. In the present study, we have studied total 177 eligible patients and subjects including 128 healthy latent Epstein-Barr-virus(EBV)-infected subjects, 17 newly-onset acute infectious mononucleosis patients, 16 newly-diagnosed EBV-associated Hodgkin lymphoma patients, and 16 EBV-negative normal control subjects. We have established human-thymus/liver-SCID chimera, reaggregated thymic organ culture, and fetal thymic organ culture. We here show that the average frequency of total and CD8+ NKT cells in PBMCs from 128 healthy latent EBV-infected subjects is significantly higher than in 17 acute EBV infectious mononucleosis patients, 16 EBV-associated Hodgkin lymphoma patients, and 16 EBV-negative normal control subjects. However, the frequency of total and CD8+ NKT cells is remarkably increased in the acute EBV infectious mononucleosis patients at year 1 post-onset. EBV-challenge promotes CD8+ NKT cell development in the thymus of human-thymus/liver-SCID chimeras. The frequency of total (3% of thymic cells) and CD8+ NKT cells (∼25% of NKT cells) is significantly increased in EBV-challenged chimeras, compared to those in the unchallenged chimeras (<0.01% of thymic cells, CD8+ NKT cells undetectable, respectively). The EBV-induced increase in thymic NKT cells is also reflected in the periphery, where there is an increase in total and CD8+ NKT cells in liver and peripheral blood in EBV-challenged chimeras. EBV-induced thymic CD8+ NKT cells display an activated memory phenotype (CD69+CD45ROhiCD161+CD62Llo). After EBV-challenge, a proportion of NKT precursors diverges from DP thymocytes, develops and differentiates into mature CD8+ NKT cells in thymus in EBV-challenged human-thymus/liver-SCID chimeras or reaggregated thymic organ cultures. Thymic antigen-presenting EBV-infected dendritic cells are required for this process. IL-7, produced mainly by thymic dendritic cells, is a major and essential factor for CD8+ NKT cell differentiation in EBV-challenged human-thymus/liver-SCID chimeras and fetal thymic organ cultures. Additionally, these EBV-induced CD8+ NKT cells produce remarkably more perforin than that in counterpart CD4+ NKT cells, and predominately express CD8αα homodimer in their co-receptor. Thus, upon interaction with certain viruses, CD8 lineage-specific NKT cells are developed, differentiated and matured intrathymically, a finding with potential therapeutic importance against viral infections and tumors
    corecore