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ABSTRACT 
 
Reproducibility is a fundamental requirement in scientific experiments and clinical 
contexts.  Recent publications raise concerns about the reliability of microarray 
technology because of the apparent lack of agreement between lists of differentially 
expressed genes (DEGs).  In this study we demonstrate that (1) such discordance may 
stem from ranking and selecting DEGs solely by statistical significance (P) derived from 
widely used simple t-tests; (2) when fold change (FC) is used as the ranking criterion, the 
lists become much more reproducible, especially when fewer genes are selected; and (3) 
the instability of short DEG lists based on P cutoffs is an expected mathematical 
consequence of the high variability of the t-values.  We recommend the use of FC 
ranking plus a non-stringent P cutoff as a baseline practice in order to generate more 
reproducible DEG lists.  The FC criterion enhances reproducibility while the P criterion 
balances sensitivity and specificity. 
 
 
 
 
 
Abbreviations: 
 
A: The MAQC sample A (Stratagene Universal Human Reference RNA);  
ABI: Applied Biosystems microarray platform;  
AFX: Affymetrix microarray platform;  
AG1: Agilent one-color microarray platform;  
B: The MAQC sample B (Ambion Human Brain Reference RNA);  
C: The MAQC sample C (75%A+25%B);  
CV: Coefficient of variation;  
D: The MAQC sample D (25%A+75%B);  
DEG: Differentially expressed genes;  
FC: Fold change in expression levels; 
GEH: GE Healthcare microarray platform;  
ILM: Illumina microarray platform;  
MAQC: MicroArray Quality Control project; 
P: The P-value calculated from a two-tailed two-sample t-test assuming equal variance; 
POG: Percentage of Overlapping (common) Genes between two lists of differentially 
expressed genes.  It is used as a measure of concordance of microarray results. 
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INTRODUCTION 
 
A fundamental step in most microarray experiments is determining one or more short 
lists of differentially expressed genes (DEGs) that distinguish biological conditions, such 
as disease from health.  Challenges regarding the reliability of microarray results have 
largely been founded on the inability of researchers to replicate DEG lists across highly 
similar experiments.  For example, Tan et al.1 found only four common DEGs using an 
identical set of RNA samples across three popular commercial platforms.  Independent 
studies by the groups of Ramalho-Santos2 and Ivanova3 of stem cell-specific genes using 
the same Affymetrix platform and similar study design found a disappointing six 
common DEGs among about 200 identified in each study4.  A comparative 
neurotoxicological study by Miller et al.5 using the same set of RNA samples found only 
11 common DEGs among 138 and 425, respectively, from Affymetrix and CodeLink 
platforms. All these studies ranked genes by P from simple t-tests, used a P threshold to 
identify DEG lists, and used the Percentage of Overlapping Genes (POG) between DEG 
lists as the measure of reproducibility. 
 
Criticism of and concerns about microarrays continue to appear in some of the most 
prestigious scientific journals6-10, leading to a growing negative perception regarding 
microarray reproducibility, and hence reliability.  However, in reanalyzing the data set of 
Tan et al.1, Shi et al.11 found that cross-platform concordance was markedly improved 
when either simple fold change (FC) or Significance Analysis of Microarrays (SAM)12 
methods were used to rank order genes before determining DEG lists.  The awareness 
that microarray reproducibility is sensitive to how DEGs are identified was, in fact, a 
major motivator for the MAQC project11.  
 
Several plausible explanations and solutions have been proposed to interpret and address 
the apparent lack of reproducibility and stability of DEG lists from microarray studies.  
Larger sample sizes13; novel, microarray-specific statistical methods14; more accurate 
array annotation information by mapping probe sequences across platforms1, 15; 
eliminating absent call genes from data analysis11, 16, 17; improving probe design to 
minimize cross-hybridization15; standardizing manufacturing processes1; and improving 
data quality by fully standardizing sample preparation and hybridization procedures are 
among the suggestions for improvement18.  
 
The MAQC study was specifically designed to address these previously identified 
sources of variability in DEG lists.  Two very different RNA samples, Stratagene 
Universal Human Reference RNA and Ambion Human Brain Reference RNA, with 
thousands of differentially expressed genes, were prepared in sufficient quantities and 
distributed to three different laboratories for each of the five different commercial whole 
genome microarray platforms participating in the study.  For each platform, each sample 
was analyzed using five technical replicates with standardized procedures for sample 
processing, hybridization, scanning, data acquisition, data preprocessing, and data 
normalization at each site.  The probe sequence information was used to generate a 
stringent mapping of genes across the different platforms and 906 genes were further 
analyzed with TaqMan® assays using the same RNA samples.  
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A careful analysis of these MAQC data sets, along with numerical simulations and 
mathematical arguments, demonstrates that the reported lack of reproducibility of DEG 
lists can be attributed in large part to identifying DEGs from simple t-tests without 
consideration of FC when sample numbers are small. The finding holds for intra-
laboratory, inter-laboratory, and cross-platform comparisons independent of sample pairs 
and normalization methods, and is increasingly apparent with decreasing number of 
genes selected. 
 
As a basic procedure for improving reproducibility while balancing specificity and 
sensitivity, choosing genes using a combination of FC ranking and P threshold was 
investigated.  This joint criterion results in DEG lists with much higher POG, 
commensurate with better reproducibility, than lists generated by t-test P alone, even 
when selecting a relatively small numbers of genes.  An FC criterion explicitly 
incorporates the measured quantity to enhance reproducibility, whereas a P criterion 
incorporates control of sensitivity and specificity. The results increase our confidence in 
the reproducibility of microarray studies while supporting a need for caution in the use of 
inferential statistics when sample numbers are small.  While numerous more advanced 
statistical modeling techniques have been proposed and compared for selecting DEGs14, 

19, 20, the primary objectives here are to explain that the primary reason for microarray 
reproducibility concerns is failure to include an FC criterion during gene selection, and to 
recommend a simple and straightforward approach concurrently satisfying statistical and 
reproducibility requirements. It should be stressed that robust methods are needed to meet 
stringent clinical requirements for reproducibility, sensitivity and specificity of 
microarray applications in, for example, clinical diagnostics and prognostics 
 
 
RESULTS 
 
The POG for a number of gene selection scenarios employing P and/or FC are compared 
and a numerical example (see side box) is provided that shows how the simple t-test, 
when sample size is small, results in selection of different genes purely by chance. While 
the data lack biological variability, the results are supported by the toxicogenomic data of 
Guo et al.21  While P could be computed from many different statistical methods, for 
simplicity and consistency, throughout this article P is calculated with the two-tailed t-
test that is widely employed in microarray data analysis. 
 
1. Inter-site Concordance for the Same Platform 
Figure 1 gives plots of inter-site POG versus number of genes for each MAQC platform.  
Since there are three possible inter-site comparisons (S1-S2, S1-S3, and S2-S3) and six 
gene selection methods (see Methods), there are 18 POG lines for each platform.  Figure 
1 shows that inter-site reproducibility in terms of POG heavily depends on the number of 
chosen differential genes and the gene ranking criterion: Gene selection using FC ranking 
gives consistently higher POG than P ranking.  The POG from FC ranking is near 90% 
for as few as 20 genes for most platforms, and remains at this high inter-site concordance 
level as the number of selected genes increases. In contrast, the POG from P ranking is in 
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the range of 20-40% for as many as 100 genes, and then asymptotically approaches 90% 
only after several thousand genes are selected. 
 
The POG is higher when the analyses are limited to the genes commonly detected 
(“Present” in the majority of replicates for each sample) by both test sites under 
comparison (Supplementary Fig. 1, available online).  In addition to a slight increase (2-
3%), the inter-site POG lines after noise filtering are more stable than those before noise 
filtering, particularly for ABI, AG1, and GEH.  Furthermore, differences between the 
three ILM test sites are further decreased after noise filtering, as seen from the 
convergence of the POG for S1-S2, S1-S3, and S2-S3 comparisons.  Importantly, noise 
filtering does not change either the trend or magnitude of the higher POG graphs for FC 
ranking compared with P-ranking. 
 
Inter-site concordance for different FC and P ranking criteria were also calculated for 
other MAQC sample pairs having much smaller differences than for sample A versus 
sample B, and correspondingly lower FC. In general, POG is much lower for other 
sample pairs regardless of ranking method and ranking order varies more greatly, though 
FC ranking methods still consistently gives a higher POG than P ranking methods. 
Supplementary Figure 2 gives the plots of POG for Sample C versus Sample D22, 23 for all 
inter-site comparisons. 
 
The substantial difference in inter-site POG shown in Figure 1 and Supplementary Figure 
1 is a direct result of applying different gene selection methods to the same data sets, and 
clearly depicts how perceptions of inter-site reproducibility can be affected for any 
microarray platform.  While the emphasis here is on reproducibility in terms of POG, in 
practice, this criterion must be balanced against other desirable characteristics of gene 
lists, such as specificity and sensitivity (when the truth is binary) or mean squared error 
(when the truth is continuous), considerations that that are discussed further in later 
sections. 
 
2. Cross-platform Concordance 
Figure 2 shows the substantial effect that FC- and P-ranking based gene selection 
methods have on cross-platform POG.  Similar to inter-site comparisons, P-ranking 
results in lower cross-platform POG than FC-ranking.  When FC is used to rank DEGs 
from each platform, the cross-platform POG is around 70-85%, depending on the 
platform pair. The platforms themselves contribute about 15% differences in the cross-
platform POG, as seen from the spread of the blue POG lines.  Noise filtering improves 
FC-ranking cross-platform POG by about 5-10% and results in more stable POG when a 
smaller number of genes are selected (Fig. 2b). Importantly, the relative differences 
between FC- and P-ranking methods remain the same after filtering. 
 
3. Concordance between Microarray and TaqMan® Assays 
TaqMan® real-time PCR assays are widely used to validate microarray results24, 25.  In the 
MAQC project, the expression levels of 997 genes randomly selected from available 
TaqMan® assays have been quantified in the four MAQC samples22, 26.  Nine hundred and 
six (906) of the 997 genes are among the “12,091” set of genes found on all of the six 
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genome-wide microarray platforms22.  There are four TaqMan® assays technical 
replicates for each sample and the DEGs for TaqMan® assays were identified using the 
same six gene selection procedures as those used for microarray data.  The DEGs 
calculated from the microarray data are compared with DEGs calculated from TaqMan® 
assay data.  With noise filtering (i.e., focusing on the genes detected by both the 
microarray platform and TaqMan® assays), 80-85% concordance was observed (Fig. 3).  
Consistent with inter-site and cross-platform comparisons, POGs comparing microarray 
with TaqMan® assays also show that ranking genes by FC results in markedly higher 
POG than ranking by P alone, especially for short gene lists. POG results without noise 
filtering (Supplementary Fig. 3) are some 5% lower but the notable differences in POG 
between the FC- and P- ranking are unchanged. 
 
4. Reproducibility of FC and t-statistic: Different Metrics for Identifying 
Differentially Expressed Genes (DEGs) 
Figure 4 shows that the inter-site reproducibility of log2 FC (panel a) is much higher than 
that of log2 t-statistic (panel b).  In addition, the relationship between log2 FC and log2 t-
statistic from the same test site is non-linear and the correlation appears to be low (panel 
c).  We see similar results when data from different microarray platforms are compared to 
each other or when microarray data are compared against TaqMan® assay data (results 
not shown).  The differences between the reproducibility of FC and t-statistic observed 
here are consistent with the differences between POG results in inter-site (Fig. 1), cross-
platform (Fig. 2), and microarray versus TaqMan® assay (Fig. 3) comparisons.  The 
nonlinear relationship between log2 FC and log2 t-statistic (Fig. 5c) leads to low 
concordance of lists of DEGs derived from FC ranking when compared to a list derived 
from t-statistic (P) ranking (Supplementary Fig. 4); an expected outcome due to the 
different emphases of FC and P. 
 
5. Joint Fold Change and P Rule Illustrated with a Volcano Plot: Ranking by 
FC, not by P 
Supplementary Figure 5 is a volcano plot depicting how a joint FC and P rule works in 
gene selection.  It uses the MAQC Agilent data, and plots negative log P on the y-axis 
versus log FC on the x-axis.  A joint rule chooses genes that fall in the upper left and 
right sections of the plot (sections A and C of Fig. 5).  Other possible cutoff rules for 
combining FC and P are apparent, but are precluded from inclusion due to space.  An 
important conclusion from this study is that genes should be ranked and selected by FC 
(x-axis) with a non-stringent P threshold in order to generate reproducible lists of DEGs.   
 
6. Concordance Using Other Statistical Tests 
Numerous different statistical tests including rank tests (e.g., Wilcoxon rank-sum test) 
and shrunken t-tests (e.g., SAM) have been used for the identification of DEGs.  
Although this work is not intended to serve as a comprehensive performance survey of 
different statistical procedures, we set out to briefly examine a few examples due to their 
popularity.  Figure 5 shows the POG results of several commonly used approaches 
including FC ranking, t-test statistic, Wilcoxon rank-sum test, and SAM using AFX site-
site comparison as an example.  The POG by SAM (pink line), although greatly improved 
over that of simple t-test statistic (purple line), approached, but did not exceed, the level 
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of POG based on FC ranking (green line).  In addition, the small numbers of replicates in 
this study rendered many ties in the Wilcoxon rank statistic, resulting in poor inter-site 
concordance in terms of rank-order of the DEGs between the two AFX test sites.  Similar 
findings (data not shown) were observed using the toxicogenomics data set of Guo et 
al.21 
 
7. Gene Selection in Simulated Datasets 
The MAQC data, like data from actual experiments, allows evaluation of DEG list 
reproducibility, but not of truth. Statistics are used to estimate truth, often in terms of 
sensitivity and specificity, but the estimates are based on assumptions about data variance 
and error structure that are also unknown. Simulations where truth can be specified a 
priori are useful to conduct parametric evaluations of gene selection methods, and true 
false positives and negatives are then known. However, results are sensitive to 
assumptions regarding data structure and error that for microarrays remains poorly 
characterized. 
 
Figure 6 gives POG versus number of genes for three simulated data sets (MAQC-
simulated set, Small-Delta simulated set, and Medium-Delta simulated set, see Methods) 
that were prepared in order to compare the same gene selection methods as the MAQC 
data.  The MAQC-simulated set was created to emulate the magnitude and structure of 
differential expression observed between the actual MAQC samples A and B (i.e., 
thousands of genes with FC > 2).  By comparison, the Small-Delta simulated data set had 
only 50 significant genes with FC > 2 and most genes had FC < 1.3. The Medium-Delta 
data set had FC profiles in between. 
 
For the MAQC-simulated data, either FC ranking or FC ranking combined with any of 
the P threshold resulted in markedly higher POG than any P ranking method, regardless 
of gene list length and coefficient of variation (CV) of replicates.  The POG is ~100%,  
~95%, and ~75%, for replicate CV values of 2%, 10%, and 35% CV, respectively, 
decreasing to about 20-30% with an exceedingly high (100%) CV. In contrast, POG from 
P ranking alone varies from a few percent to only ~10% when 500 genes are selected. 
 
For the Medium- and Small-Delta simulated data sets, we see differences start to emerge 
between using FC alone and FC with P cutoff.  From Figure 6, when variances in 
replicates become larger (CV > 10%), we see that reproducibility is greatly enhanced 
using FC ranking with a suitable P cutoff versus FC or P by themselves.  In addition, 
when variances are small (CV ≤ 10%), we see that reproducibility is essentially the same 
for FC with P or without.  What is clear is that P by itself did not produce the most 
reproducible list for any condition simulated. 
 
Although P ranking generally resulted in very low POG, a false positive was rarely 
produced, even for a list size of 500 (data not shown).  Thus, the P criterion performed as 
expected, and identified mostly true positives. Unfortunately, the probability of selection 
of the same true positives with a fixed P cutoff in a replicated experiment appears small 
due to variation in the P statistic itself (see inset).  FC ranking by itself resulted in a large 
number of false positives with a large number of genes for the Medium and Small-Delta 
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sets when genes with small FCs are selected as differentially expressed.  These false 
positives were greatly reduced to the same level as for the P-ranking alone when FC 
ranking was combined with a P-cutoff. 
 
 
DISCUSSION 
 
A fundamental requirement in microarray experiments is that the identification of DEG 
lists must be reproducible if the data and scientific conclusion from them are to be 
credible. DEG lists are normally developed by rank-ordering genes in accordance with a 
suitable surrogate value to represent biological relevance, such as the magnitude of the 
differential expression (i.e., FC) or the measure of statistical significance (P) of the 
expression change, or both.  The results show that concurrent use of both FC ranking and 
P-cutoff as criteria to identify biological relevant genes can be essential to attain 
reproducible DEG lists across laboratories and platforms. 
 
A decade since the microarray-generated differential gene expression results of Schena et 
al.27 and Lockhart et al.28 were published, microarray usage has become ubiquitous. Over 
this time, many analytical techniques for identifying DEGs have been introduced and 
used. Early studies predominantly relied on the magnitude of differential expression 
change in experiments done with few if any replicates, with an FC cutoff typically of two 
used to reduce false positives. Mutch et al.29 recommended using intensity-dependent FC 
cutoffs to reduce biased selection of genes with low expression. 
 
Gene selection using statistical significance estimates became more prevalent during the 
last few years as studies with replicates became possible. Incorporation of a t-statistic in 
gene selection was intended to compensate for the heterogeneity of variances of genes 30. 
Haslett et al. 31 employed stringent values of both FC and P to determine DEGs. In recent 
years, there has been an increasing tendency to use P ranking for gene selection. 
Kittleson et al.32 selected genes with a FC cutoff of two and a very restrictive Bonferroni 
corrected P of 0.05 in a quest for a short list of true positive genes. Tan et al.33 used P to 
rank genes.  Correlation coefficient, which behaves similarly to the t-statistic, has also 
been widely used as a gene selection method in the identification of signature genes for 
classification purposes13, 34, 35. 
 
New and widely employed methods have appeared in recent years and that implicitly 
correct for the large variance in the t-statistic that results when gene variance is estimated 
with a small number of samples. Allison et al.14 collectively described these methods as 
“variance shrinkage” approaches. They include the popular permutation-based “SAM” 
procedure5, 12, 36, 37, Bayesian-based approaches30, 38 and others39. Qin et al.19 compared 
several variance shrinkage methods with a simple t-statistic and FC for spike-in gene 
identification on a two-color platform, concluding that all methods except P performed 
well. All these methods have the effect of reducing a gene’s variance to be between the 
average for the samples, and the average over the arrays.  
 

Main Text: 8/21 

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

07
.3

06
.1

 : 
P

os
te

d 
29

 J
un

 2
00

7



[MAQC MS-6]: Shi L and Jones WD et al., Reproducibility of Microarray Gene Lists   July-13-2006  

In some cases, however, the use of FC for gene selection was criticized and entirely 
abandoned. For example, Callow et al.40, using P alone for identifying DEGs, concluded 
that P alone eliminated the need for filtering low intensity spots because the t-statistic is 
uniformly distributed across the entire intensity range. Reliance on P alone to represent a 
gene’s FC and variability in gene selection has become commonplace. Norris and Kahn41 
describe how false discovery rate (FDR) has become so widely used as to constitute a 
standard to which microarray analyses are held. However, FDR usually employs a 
shrunken t-statistic and genes are ranked and selected similar to P (see Figure 6). 
 
Prior to MAQC, Irizarry et al.42 compared data from five laboratories and three platforms 
using the CAT plots that are essentially the same as the POG graphs used in our study. 
Lists of less than 100 genes derived from FC ranking showed 30 to 80% intra-site, inter-
site, and inter-platform concordance. Interestingly, important disagreements were 
attributable to a small number of genes with large fold change that they posit resulted 
from a laboratory effect due to inexperienced technicians and sequence-specific effects 
where some genes are not correctly measured. 
 
Exactly how to best employ FC with P to identify genes is a function of both the nature 
of the data, and the inevitable tradeoff between sensitivity and specificity that is familiar 
across research, clinical screening and diagnostics, and even drug discovery.   But how 
the tradeoff is made depends on the application. Fewer false negatives at the cost of more 
false positives may be desirable when the application is identifying a few hundred genes 
for further study, and FC ranking with a non-stringent P value cutoff from a simple t-test 
could be used to eliminate some noise. The gene list can be further evaluated in terms of 
gene function and biological pathway data, as illustrated in Guo et al.21 for 
toxicogenomic data.  Even for relatively short gene lists, FC ranking together with a non-
stringent P cutoff should result in reproducible lists.  In addition, DEG lists identified by 
the ranking of FC is much less susceptible to the impact of normalization methods.  In 
fact, global scaling methods (e.g., median- or mean-scaling) do not change the relative 
ranking of genes based on FC; they do, however, impact gene ranking by P-value.   
 
The tradeoffs between reproducibility, sensitivity, and specificity become pronounced 
when genes are selected by P alone without consideration of FC, especially when a 
stringent P cutoff is used to reduce false positives. When sample numbers are small, any 
gene’s t-statistic can change considerably in repeated studies within or across laboratories 
or across platforms. Each study can select different significant genes, purely by chance. It 
is entirely possible that separately determined lists will have a small proportion of 
common genes even while each list comprises mostly true positives. This apparent lack 
of reproducibility of the gene lists is an expected outcome of statistical variation in the t-
statistic for small numbers of samples. In other words, each study fails to produce some, 
but not all, of the correct results. The side box provides a numerical example of how gene 
list discordance can result from variation in the t-statistic across studies. Decreasing the P 
cutoff will increase the proportion of true positives, but also diminish the number of 
selected genes, diminish genes common across lists, and increase false negatives. 
Importantly, selecting genes based on a small P cutoff derived from a simple t-test 
without consideration of FC renders the gene list non-reproducible in many cases. 
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Additional insight is gained by viewing gene selection from the perspective of the 
biologist ultimately responsible for interpreting microarray results.  Statistically speaking, 
a microarray experiment tests 10,000 or more null hypotheses where essentially all genes 
have non-zero differential expression.  Statistical tests attempt to account for an 
unknowable error structure, in order to eliminate the genes with low probability of 
biological relevance.  To the biologist, however, the variance of a gene with a large FC in 
one microarray study may be irrelevant if a similar experiment again finds the gene to 
have a large FC; the second experiment would probably be considered a validating 
reproduction.  This conclusion would be reasonable since the gene’s P depends on a poor 
estimate of variance across few samples, whereas a repeated FC measurement is tangible 
reproducibility which tends to increase demonstrably with increasing FC.  The biological 
interpreter can also consider knowledge of gene function and biological pathways before 
finally assigning biological relevance, and will be well aware that either P or FC is only 
another indicator regarding biological significance. 

This study shows that genes with smaller expression fold changes generated from one 
platform or laboratory are, in general, less reproducible in another laboratory with the 
same or different platforms.  However, it should be noted that genes with small fold 
changes may be biologically important43. When a fixed FC cutoff is chosen, sensitivity 
could be sacrificed for reproducibility.  Alternatively, when a high P cutoff (or no P 
cutoff) is used, specificity could be sacrificed for reproducibility. Ultimately, the 
acceptable trade-off is based on the specific question being asked or the need being 
addressed. When searching for a few reliable biomarkers, high FC and low P cutoffs can 
be used to produce a highly specific and reproducible gene list.  When identifying the 
components of genetic networks involved in biological processes, a lower FC and higher 
P cutoff can be used to identify larger, more sensitive but less specific, gene lists.  In this 
case additional biological information about putative gene functions can be incorporated 
to identify reliable gene lists that are specific to the biological process of interest. 

Truly differentially expressed genes should be more likely identified as differentially 
expressed by different platforms and from different laboratories than those genes with no 
differential expression between sample groups.  In the microarray field, we usually do not 
have the luxury of knowing the “truth” in a given study.  Therefore, it is not surprising 
that most microarray studies and data analysis protocols have not been adequately 
evaluated against the “truth”.  A reasonable surrogate of such “truth” could be the 
consensus of results from different microarray platforms, from different laboratories 
using the same platform, or from independent methods such as TaqMan® assays, as we 
have extensively explored in this study. 

The fundamental scientific requirement of reproducibility is a critical dimension to 
consider along with balancing specificity and sensitivity when defining a gene list. 
Irreproducibility would render microarray technology generally, and any research result, 
specifically, vulnerable to criticism.  New methods for the identification of DEGs 
continue to appear in the scientific literature.  These methods are typically promoted in 
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terms of improved sensitivity (power) while retaining nominal rates of specificity.  
Reproducibility is seldom emphasized. 
 
The results show that selecting DEGs based solely on P from a simple t-test most often 
predestines a poor concordance in DEG lists, particularly for small numbers of genes.  In 
contrast, using FC ranking in conjunction with a P-cutoff results in more concordant gene 
lists concomitant with needed reproducibility, even for fairly small numbers of genes. 
Moreover, enhanced reproducibility holds for inter-site, cross-platform, and between 
microarray and TaqMan® assay comparisons, and is independent of platforms, sample 
pairs, and normalization methods (data not shown).  The results should increase 
confidence in the reproducibility of data produced by microarray technology and should 
also expand awareness that gene lists identified solely based on P will tend to be 
discordant.  This work demonstrates the need for a shift from the common practice of 
selecting differentially expressed genes solely on the ranking of a statistical significance 
measure (e.g., t-statistic) to an approach that emphasizes fold-change, a quantity actually 
measured by microarray technology. 
  
 
Conclusions and Recommendations: 
 
1. A fundamental step of microarray studies is the identification of a small subset of 

DEGs from among tens of thousands of genes probed on the microarray. DEG lists 
must be concordant to satisfy the scientific requirement of reproducibility, and must 
also be specific and sensitive for scientific relevance. A baseline practice is needed 
for properly assessing reproducibility/concordance alongside specificity and 
sensitivity. 

2. Reports of DEG list instability in the literature are often a direct consequence of 
comparing DEG lists derived from a simple t-statistic when the sample size is small 
and variability in variance estimation is large.  Therefore, the practice of using P 
alone for gene selection should be discouraged. 

3. A DEG list should be chosen in a manner that concurrently satisfies scientific 
objectives in terms of inherent tradeoffs between reproducibility, specificity, and 
sensitivity. 

4. Using FC and P together balances reproducibility, specificity, and sensitivity.  
Control of specificity and sensitivity can be accomplished with a P criterion, while 
reproducibility is enhanced with an FC criterion.  Sensitivity can also be improved by 
better platforms with greater dynamic range and lower variability or by increased 
sample sizes. 

5. FC ranking should be used in combination with a non-stringent P threshold to select a 
DEG list that is reproducible, specific, and sensitive, and a joint rule is recommended 
as a baseline practice. 

6. These conclusions and recommendations are further supported by toxicogenomic 
results from Guo et al.21 
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METHODS 
 
MAQC Data Sets 
Analyses identified differentially expressed genes between the primary samples A 
(Stratagene Universal Human Reference RNA, Catalog #740000) and B (Ambion Human 
Brain Reference RNA, Catalog #6050) of the MAQC study.  Analyses are additionally 
limited to data sets from the following five commercial genome-wide microarray 
platforms: ABI (Applied Biosystems), AFX (Affymetrix), AG1 (Agilent one-color), GEH 
(GE Healthcare), and ILM (Illumina), and to the subset of “12,091” genes commonly 
probed by them.  TaqMan® assay data for 906 genes are used to examine gene list 
comparability between microarrays and TaqMan® assays.  For more information about 
the MAQC project and the data sets, refer to Shi et al.22. 
 
Normalization Methods 
The following manufacturer’s preferred normalization methods were used: quantile 
normalization for ABI and ILM, PLIER for AFX, and median-scaling for AG1 and 
GEH22.  For quantile normalization (including PLIER), each test site is independently 
considered. 
  
Gene Ranking (Selection) Rules 
Six gene ranking (selection) methods were examined: (1) FC (fold change ranking); (2) 
FC_P0.05 (FC ranking with P cutoff of 0.05); (3) FC_P0.01 (FC ranking with P cutoff of 
0.01); (4) P (P ranking, simple t-test assuming equal variance); (5) P_FC2 (P ranking 
with FC cutoff of 2); (6) P_FC1.4 (P ranking with FC cutoff of 1.4).  When a cutoff 
value (e.g., P<0.05) is imposed for a ranking metric (e.g., FC), it is likely that the lists of 
candidate genes that meet the cutoff value may not be the same for the two test sites or 
two platforms as a result of differences in inter-site or cross-platform variations.  Such 
differences are part of the gene selection process and have been carried over to the gene 
ranking/selection stage. 
 
Evaluation Criterion - POG (Percentage of Overlapping Genes) 
The POG (percentage of overlapping genes) criterion was applied in three types of 
comparisons: (1) Inter-site comparison using data from the three test sites of each 
platform; (2) Cross-platform comparison between ABI, AFX, AG1, GEH, and ILM using 
data from test site 1; for each sample pair, there are ten cross-platform pairs for 
comparison; (3) Microarray versus TaqMan® assay comparisons. 
 
POG is calculated for several different cutoffs that can be considered as arbitrary.   
The number of genes considered as differentially expressed is denoted as 2L, where L is 
both the number of genes up- and down-regulated.  The number of genes available for 
ranking and selection in one direction, L, varies from 1 to 6000 (with a step of one) or 
when there are no more genes in one regulation direction, corresponding to 2L varying 
from 2 to 12,000.  Directionality of gene regulation is considered in POG calculations; 
genes selected by two sites or platforms but with different regulation directionalities are 
considered as discordant.   
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The formula for calculating POG is: POG = 100*(DD+UU)/2L, where DD and UU are 
the number of commonly down- or up-regulated genes, respectively, from the two lists, 
and L is the number of genes selected from the up- or down-regulation directionality.  To 
overcome the confusion of different numbers for the denominator, in our POG 
calculations we deliberately selected an equal number of up-regulated and down-
regulated genes, L. 
 
Noise-filtering 
Most of the analyses in this study exclude flagging information; that is, the entire set of 
“12,091” genes is used in the analyses.  Some calculations are limited to subsets of genes 
commonly detectable (“common present”) by the two test sites or two platforms under 
comparison.  To be denoted as “commonly present”, the gene is detected (“present”) in 
the majority of replicates (e.g., three or more when there are five replicates) for each 
sample in a sample-pair comparison and for each test site or platform.   
 
Gene Selection Simulation 
A simulation was created to emulate the characteristics of the MAQC dataset.  Fifteen 
thousand simulated genes were created where 5,000 were undifferentiated in expression 
between simulated biological samples A and B and 10,000 were differentiated but at 
various levels (exponential distribution for the log ratio, where almost 4,000 are 
differentiated two-fold or higher, similar to a typical platform in the MAQC study, 
divided equally into up and down regulated genes).  To simulate instances of technical or 
biological replicates, multiplicative noise (error) was added to the signal for each gene for 
each of five simulated replicates for each sample using an error distribution that would 
produce a replicate CV similar to that typically seen in the MAQC data set (ie, the mean 
replicate CV would be roughly 10%).  The CV for any given gene was randomly selected 
from a trimmed exponential distribution.   To address a variety of additional error 
scenarios but preserving the same distribution of fold change, we also considered three 
additional mean CV values (2%, 35%, and 100%).  To understand the impact of gene list 
size on the stability of the DEG list, list sizes of 10, 25, 100, and 500 genes were 
examined for each mean CV scenario.  Several gene selection rules were compared: FC 
ranking only, P ranking only, and shrunken t-statistic ranking. Note: P ranking is 
equivalent to t-statistic ranking as well as ranking based on FDR that monotonically 
transforms the P-value.  In addition, shrunken t-statistic ranking is equivalent to ranking 
based on the test statistic used by SAM and related methods.   In addition, rules based on 
FC ranking with a P threshold were also compared (for P=0.1, 0.01, 0.001, and 0.0001).  
Finally, to simulate differences in the variation patterns of analytes between platforms 
and even between laboratories, covariance between laboratories/platforms of the variance 
for each gene was included in the simulations.  For a given mean CV, 20 or more 
simulated instances of (5) replicates of simulated biological samples A and B were 
created and DEG lists were prepared for each instance that were rank ordered using the 
methods described above.  To determine reproducibility of a given method for a given 
mean CV using a given gene list size, the rank-ordered gene lists from these 20 instances 
were pair-wise compared for consistency and reproducibility.  The results presented in 
the graphs are averages from those pair-wise comparisons.     
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The MAQC actual data is characterized by large magnitudes of differential expression 
among the vast majority of the 12,091 common genes, with some 4000 exhibiting FC > 2 
and hundreds with FC > 10.  As such, the data may be atypical of commonplace 
microarray experiments with biological effects.  Consequently, two other simulation data 
sets were created with far fewer genes with large FC, as might be expected in some actual 
microarray experiments. Specifically, the Small-Delta data set was created with fewer 
than 50 genes with FC > 2, and a FC < 1.3 for most differentiated genes, and 10,000 
undifferentiated genes.  In addition, the variances of the genes were correlated similar to 
that observed in the MAQC data.  The third simulated dataset, termed the Medium-Delta 
set, had a large number of differentiated genes similar to the MAQC simulated dataset, 
but with small FC similar to the Small-Delta set.  Again, gene variances were correlated 
similar to that observed in the MAQC data. 
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Variability of the two-sample t-statistic 
In a two-sample t-test comparing the mean of sample A to the mean of sample B, the t-statistic is given as 
follows:  
              

n
S

n
S

XX

A

p

B

p

ABt
22

+

−
=

   

where X A  is the average of the log2 expression levels of sample A with nA replicates, and X B  is the 
average of the log2 expression levels of sample B  with nB  replicates, and  Sp

2=(SSA+SSB)/(nA+nB-2) is the 
pooled variance of samples A and B, and SS denotes the sum of squared errors. The numerator of the t-
statistic is the fold-change (FC) in log2 scale and represents the signal level of the measurements (i.e., the 
magnitude of the difference between the expression levels of sample A and sample B). The denominator 
represents the noise components from the measurements of samples A and B.  Thus, the t-statistic 
represents a measure of the signal-to-noise ratio.  Therefore, the FC and the t-statistic (P) are two measures 
for the differences between the means of sample A and sample B.  The t-statistic is intrinsically less 
reproducible than FC when the variance is small.    
 
Assume the data are normally distributed, the variances of samples A and B are equal (σ2 ), the numbers of 
replicates in samples A and B are equal (n = nA = nB), and that there is a real difference in the mean values 
between samples A and B, d (the true FC in log2 scale). Then the t-statistic has a non-central t-distribution 
with non-central parameter 

( )( )2nd σδ = , 
 and the mean and variance of the t-statistic (Johnson and Kotz, 1970) are 
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where v= (2n-2) and is the degrees of freedom of the non-central t-distribution.    When d = 0 (the two 
means are equal), then the t-statistic has a t-distribution with mean  E(t) = 0 and Var(t) = v/(v-2).  The 
variance of the t-statistic depends on the sample size n, the magnitude of the difference between the two 
means d, and the variance σ2.  Οn the other hand, the variance of the mean difference for the FC is (2/n)σ2.  
That is, the variance of the FC depends only on the sample size n and the variance σ2, regardless of the 
magnitude of the difference d between the two sample means.  
 
In an MAQC data set, a typical sample variance for the log2 expression levels is approximately σ2 =  0.152.  
With n = 5, the standard deviation of the FC (in log2 scale) is 0.09.   For a differentially expressed gene 
with a 4-fold change between 5 replicates of sample A and 5 replicates of sample B, d = 2 and the t-values 
have a non-central t-distribution with (ν=nA+nB-2) = 8 degrees of freedom and δ = 21.08.  From the 
equations above, the mean and the variance of the t-values are E(t) = 23.35 and Var(t) = 6.962.  Within two 
standard deviations the expected value of the t-value ranges from 9.43 (=23.35-2 x 6.96) to 37.27 
(=23.35+2 x 6.96), corresponding to Ps from 1 x 10-5  to  3 x 10-10, based on  the Student’s two-sided t-test 
with 8 degrees of freedom. In contrast when n=5 the standard deviation of the FC (in log2 scale) is 0.09. 
The expected value of the FC ranges only from 3.53 (= 21.82) to 4.53 (=22.18) within two standard deviations.   
In this case, this gene would be selected as differentially expressed using either a FC cutoff of 3.5 or a P 
cutoff of 1 x 10-5. On the other hand, for a gene with a 2-fold change (d = 1), the t-statistic has a non-
central t-distribution with δ = 10.54.  The mean and the variance of the t-statistic are E(t) = 11.68 and 
Var(t) = 3.622 with a corresponding P of  3 x 10-6 at t = 11.68.  Using the same P cutoff, 1 x 10-5,   this gene 
is likely to be selected with the probability greater than 0.5.  For the FC criterion, the expected value of the 
FC ranges from 1.76 (= 20.82) to 2.26 (=21.18).  Using the same FC cutoff of 3.5, this gene is very unlikely to 
be selected.  Thus, the top ranked gene list based on the FC is more reproducible than the top ranked gene 
list based on the P. The top ranked genes selected by a P cutoff may not be reproducible between 
experiments although both lists may contain mostly differentially expressed genes. 
 
Reference: Johnson and Kotz (1970).  Continuous Univariate Distributions - 2. Houghton Mifflin, Boston.    
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FIGURE LEGENDS 
 
Figure 1: Concordance for inter-site comparisons.  Each panel represents the POG results 
for a commercial platform comparing inter-site consistency in terms of DEGs between 
samples B and A.  For each of the six gene selection methods, there are three possible 
inter-site comparisons: S1-S2, S1-S3, and S2-S3.  Therefore, each panel consists of 18 
POG lines that are colored based on gene ranking/selection method.  Results shown here 
are based on the entire set of “12,091” genes commonly mapped across the microarray 
platforms without noise (absent call) filtering.  Results are slightly improved when the 
analyses are performed using the subset of genes that are commonly detectable by the 
two test sites, as shown in the Supplementary Figure 1.  The x-axis represents the number 
of selected DEGs, and the y-axis is the percentage (%) of genes common to the two gene 
lists derived from two test sites at a given number of DEGs.   
 
Figure 2: Concordance for cross-platform comparisons. Panel a: Based on the “12,091” 
data set (without noise filtering); Panel b: Based on subsets of genes commonly detected 
(“Present”) by two platforms.  For each platform, the data from test site1 are used for 
cross-platform comparison.  Each POG line corresponds to comparison of the DEGs from 
two microarray platforms using one of the six gene selection methods.  There are ten 
platform-platform comparison pairs, resulting in 60 POG lines for each panel.  The x-axis 
represents the number of selected DEGs, and the y-axis is the percentage (%) of genes 
common to the two gene lists derived from two platforms at a given number of DEGs.    
POG lines circled by the blue oval are from FC based gene selection methods with or 
without a P cutoff, whereas POG lines circled by the teal oval are from P based gene 
selection methods with or without an FC cutoff.  Shown here are results for comparing 
sample B and sample A.   
  
Figure 3: Concordance between microarray and TaqMan® assays.  Each panel represents 
the comparison of one microarray platform to TaqMan® assays.  For each microarray 
platform, the data from test site 1 are used for comparison to TaqMan® assays.  Each 
POG line corresponds to comparison of the DEGs from one microarray platform and 
those from the TaqMan® assays using one of the six gene selection methods.  The x-axis 
represents the number of selected DEGs, and the Y-axis is the percentage (%) of genes 
common to DEGs derived from a microarray platform and those from TaqMan® assays.  
Shown here are results for comparing sample B and sample A using a subset of genes that 
are detectable by both the microarray platform and TaqMan® assays.  Results based on 
the entire set of 906 genes are provided in Supplementary Figure 2. 
 
Figure 4: Inter-site reproducibility of log2 FC and log2 t-statistic.  a: log2 FC of site 1 
versus log2 FC of site 2; b: log2 t-statistic of test site 1 versus log2 t-statistic of test site 
2; and c: log2 FC of test site 1 versus log2 t-statistic of test site 1.  Shown here are results 
for comparing sample B and sample A for all “12,091” genes commonly probed.  The 
inter-site reproducibility of log2 FC (a) is much higher than that of log2 t-statistic (b).  
The relationship between log2 FC and log2 t-statistic from the same test site is non-linear 
and the correlation appears to be low (c).  
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Figure 5:  Inter-site concordance based FC, t-test, Wilcoxon rank-sum test, and SAM. 
Affymetrix data on samples A and B from site 1 and site 2 for the “12,091” commonly 
mapped genes were used.  No flagged (“Absent”) genes were excluded in the analysis. 
For the Wilcoxon rank-sum tests, there were many ties, i.e., many genes exhibited the 
same level of statistical significance because of the small sample sizes (five replicates for 
each group).  The tied genes from each test site were broken (ranked) by random 
ordering.  Concordance between genes selected completely by random choice is shown in 
red and reaches 50% when all candidate genes are declared as differentially expressed.  
SAM improves inter-site reproducibility compared to t-test, and approaches, but does not 
exceed that of fold-change. 
  
Figure 6: Gene selection and percentage of agreement in gene lists in simulated data sets.  
Illustrations of the effect of biological context, replicate CV distribution, gene list size, 
and gene selection rules/methods on the reproducibility of gene lists using simulated 
microarray data.  In some sense, these three graphs represent some extremes as well as 
typical scenarios in differential expression assays.  However, FC sorting with low P 
thresholds (0.001 or 0.0001; light and medium gray boxes) consistently performed better 
overall than the other rules, even when FC ranking or P ranking by itself did not perform 
as well.   
 

SUPPLEMENTARY INFORMATION 
Supplementary Figure 1: Concordance for inter-site comparisons based on genes 
commonly detectable by the two test sites compared.  Each panel represents the POG 
results for a commercial platform comparing inter-site consistency in terms of DEGs 
between samples B and A.  For each of the six gene selection methods, there are three 
possible inter-site comparisons: S1-S2, S1-S3, and S2-S3.  Therefore, each panel consists 
of 18 POG lines that are colored based on gene ranking/selection method.  The x-axis 
represents the number of selected DEGs, and the y-axis is the percentage (%) of genes 
common to the two gene lists derived from two test sites at a given number of DEGs.   
 
Supplementary Figure 2: Concordance for inter-site comparison with samples C and D.  
The largest fold change between samples C and D is small (three-fold).  For each 
platform, DEG lists from sites 1 and 2 are compared.  Analyses are performed using the 
subset of genes that are commonly detectable by the two test sites. 
 
Supplementary Figure 3: Concordance between microarray and TaqMan® assays 
without noise-filtering.  Each panel represents the comparison of one microarray platform 
to TaqMan® assays.  The x-axis represents the number of selected DEGs, and the y-axis 
is the percentage (%) of genes common to DEGs derived from a microarray platform and 
those from TaqMan® assays.  Shown here are results for comparing sample B and sample 
A using the entire set of 906 genes for which TaqMan® assay data are available. 
 
Supplementary Figure 4: Concordance between FC and P based gene ranking methods 
(“12,091 genes”; test site 1). Each POG line represents a platform using data from its first 
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test site.  The x-axis represents the number of selected DEGs, and the y-axis is the 
percentage (%) of genes common in the DEGs derived from FC and P ranking.  Shown 
here are results for comparing sample B and sample A for all “12,091” genes commonly 
probed.  When a smaller number of genes (up to a few hundreds or thousands) are 
selected, POG for cross selection method comparison (FC vs. P) is low.  For example, 
there are only about 50% genes in common for the top 500 genes selected by FC and P 
separately, indicating that FC and P rank order DEGs dramatically differently.  When the 
number of selected DEGs increases, the overlap between the two methods increases, and 
eventually approach to 100% in common, as expected.  The low concordance between 
FC- and P-based gene ranking methods is not unexpected considering their different 
definitions. 
 
Supplementary Figure 5:  Volcano plot illustration of joint FC and P gene selection 
rule.  Genes in sectors A and C are selected as significant.  The colors correspond to the 
negative log10 P and log2 fold change values: 
Red (●): 20<-log10 P<50 and 3<log2 fold<9 or -9< log2 fold <-3  
Blue (●):  10<-log10 P<50 and 2<log2 fold<3 or -3<log2 fold<-2  
Yellow (●):  4<-log10 P<50 and 1<log2 fold<2 or -2<log2 fold<-1 
Pink (●):  10<-log10 P<20 and 3<log2 fold or log2 fold<-3   
Light blue (●):  4<-log10 P<10 and 2<log2 fold or log2 fold<-2  
Light green (●):  2<-log10 P<4 and 1<log2 fold or log2 fold<-1  
Gray (●):   -log10 P<2 or log2 fold<1 and log2 fold>-1 
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Supplementary Figure 4: Concordance between FC and P-value based gene ranking methods (“12,091 genes”; site 1).
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Figure 5: Volcano plot illustration of joint FC and P-value gene selection rule.  Genes in sectors A and C are selected as significant.
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July 13, 2006 
 
Manuscript Number:  [MAQC MS-6] 
Manuscript Title:  The reproducibility of lists of differentially expressed genes in microarray studies 
Authors:          Shi L, Jones WD, et al. 
 
 
Dear [Editor]: 
 
Thank you very much for considering our manuscript and providing us an opportunity to address 
the concerns and comments raised by the three reviewers.  We also appreciate the efforts of the 
first reviewer whose specific comments and suggestions provided valuable feedback helping us 
clarify the aims of the study and improve the manuscript.   
 
We respectfully disagree with the assessment of the second reviewer that the use of the standard 
t-test (the most common statistical test used in microarray analysis) and the use of a careful 
simulation of microarray data to complement our mathematical analysis constitute “serious flaws 
in methodology”.  The second reviewer’s comments did compel us to clarify the description of 
the data simulations to improve the manuscript.  The third reviewer was gratuitously negative, 
and some of his/her comments were even sarcastic.  It was clear to us that reviewer #3 did not 
carefully read our manuscript before drawing a conclusion and making bold statements 
throughout this review.  In sharp contrast to the other two reviewers, reviewer #3 did not even 
consider the topic of our work an issue.  We wonder whether or not we received a fair and 
unbiased review from reviewer #3.  In the three separate files attached, we provide a point-by-
point response to the three reviewers’ concerns in which the original comment is in Arial font 
and our response immediately follows in Roman font.  Modifications to the manuscript are 
colored in blue when possible. 
 
We do not conclude that the simple t-tests should not be used for the analysis of microarray data. 
 In fact, we use t-test for the analysis of microarray data in our manuscript in order to generate a 
significance measure for the fold-change of each gene.  We do not think t-test itself is wrong 
in microarray data analysis.  Instead, the problem is the use of t-statistic (P) as the ranking 
criterion for the identification of differentially expressed genes, with or without a FC threshold.  
Our work demonstrates the need for a shift from the common practice of selecting differentially 
expressed genes solely by ranking a statistical significance measure (e.g., t-statistic) to an 
approach that emphasizes fold-change, a quantity measured by microarray technology.  We also 
would like to bring to your attention that none of the reviewers’ favorite methods (e.g., SAM and 
rank test) performed as well as simple fold-change ranking in selecting reproducible DEGs, as 
demonstrated with additional analyses shown in the point-by-point responses and the revised 
manuscript. 
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All three referees seems to share a statistical perspective, a background shared by many of the 
MAQC participants who include well established statisticians and applied mathematicians as 
well as biologists.  The first two reviewers touch on issues that arose during the course of the 
project that were extensively discussed and considered by the more than fifty study participants.  
We are grateful to the reviewers for their acknowledgement of the complexity of the study.  The 
negative comments from the reviewers are testimony to the many interesting challenges facing 
the community in dealing with reproducibility in terms of lists of DEGs.  The overly negative 
tone of reviewers #2 and #3 should simply reinforce how provocative and significant our results 
are.  The questions regarding the importance and relevance of reproducibility in evaluating data 
quality are greatly appreciated as they led us to more clearly define this issue and give it greater 
emphasis in the Introduction and Discussion. 
 
The initial presentation on POG results during MAQC face-to-face meetings literally enraged 
many statisticians on the MAQC consortium.  Some of them seriously doubted that we would be 
able to produce a manuscript that was acceptable to both biological/chemical and statistical 
communities.  Several of them were even to the point of removing their names from the author 
list.  Through heavy debate that extended over several months, we achieved what could be 
considered as a breakthrough in understanding: that reproducibility is actually a third dimension 
needing optimization along with classical sensitivity and specificity.  Although we still have 
some differences of opinion regarding the relative importance of these three dimensions and the 
POG metric, just recognizing reproducibility as a third factor -- especially from a regulatory 
perspective -- has been a very important outgrowth of our interactions.  In retrospect, it seems 
that we did not make this point clear enough in the original submission of this work, and in this 
sense the critical replies of the statistically-oriented referees are understandable.  We have tried 
to make this much more prominent in the revised manuscript and our point-by-point replies, 
thereby hoping to assuage their concerns. 
 
New statistical methods for the identification of DEGs continue to appear in the scientific 
literature.  In fact, the variety of existing and emerging methods has caused some confusion in 
the research community.  These methods are typically promoted in terms of improved sensitivity 
(power) under various assumptions or conditions while retaining nominal rates of specificity.  
Reproducibility is a fundamental requirement in scientific experiments and clinical contexts, but 
is seldom emphasized in microarray literature.  Reproducibility is equally if not more important 
than sensitivity and specificity in certain experimental and clinical contexts.  Until recently 
reproducibility has not adequately been used as an essential criterion for evaluating the pros 
and cons of statistical methods for identifying DEGs.   
 
The focus of our work is the reproducibility of lists of putatively differentially expressed genes 
in microarray studies.  The apparent lack of reproducibility of such DEGs has been used as 
scientific evidence to criticize microarray technology.  Despite the availability of numerous 
statistical methods for the identification of DEGs, the simple t-statistic (and slight variations) is 
arguably still the most widely used test statistic, and many of the various methods that exist to 
create lists of DEGs primarily improve upon the inference from this basic test statistic.  Our 
work was not intended to serve as a comprehensive performance survey of different statistical 
procedures; such a survey is not within the scope of our work and by itself is another large study. 
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We are not claiming that a concurrent use of fold-change ranking combined with a P threshold is 
the ultimate and best way of identifying DEGs in all circumstances.  Instead, it appears to be a 
reasonable, straightforward (baseline) analysis procedure that can be used to enhance the 
reproducibility of DEG lists. 
 
A good understanding of these factors is critical for the peer reviewers and readers to better 
appreciate the urgency of the critical issue addressed in this work and its important contribution 
to the microarray field.  We hope that, despite the controversial nature of this work, you will 
consider the potential positive impact of increasing the salience of the reproducibility issue 
through the publication of this work. 
 
We would like to alert you that since the original submission of this manuscript, we discovered 
that the normalization of the Affymetrix data was not performed exactly according to the 
manufacturer’s recommended procedure, which was an established guideline for the MAQC 
project.  For this reason, we have renormalized the Affymetrix data and all figures and tables 
impacted by this modification have been regenerated (specifically, Figure 1b, Figure 2, Figure 
3b, Figure 4 (AFX panel), and Supplementary Figures S1b, S2b, S3b, and S4).  In addition, the 
text was updated when necessary.  While this modification had minor impact on the results and 
thereby the visualization of these data, there was no impact to the findings and conclusions that 
were represented in our original version of the manuscript. 
 
Again, we appreciate your time and effort in considering our manuscript for publication and 
hope that you will find that the revised manuscript, which thoroughly addresses the reviewers’ 
comments and suggestions, is suitable for publication in [your journal].   
 

Yours sincerely, 

 
Leming Shi, Ph.D. 
FDA/NCTR 
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Shi L. et al., Point-by-Point Response [MAQC MS-6] 

Point-by-Point Response to Peer Reviewer #1’ Comments 
 
Manuscript:  [MAQC MS-6] 
Title:   The reproducibility of lists of differentially expressed genes in microarray studies 
Corresponding author: Leming Shi (leming.shi@fda.hhs.gov)  
Date:   July 13, 2006 
 
 
General Response to Peer Reviewer #1 
 
New statistical methods for the identification of differentially expressed genes (DEGs) continue 
to appear in the scientific literature.  In fact, the variety of existing and emerging methods has 
caused some confusion in the research community.  These methods are typically promoted in 
terms of improved sensitivity (power) under various assumptions or conditions while retaining 
nominal rates of specificity.  Reproducibility is a fundamental requirement in scientific 
experiments and clinical contexts, but is seldom emphasized in microarray literature.  
Reproducibility is a critical third dimension that is distinct from specificity and sensitivity. It is 
equally if not more important than sensitivity and specificity in certain experimental and clinical 
contexts. Until recently reproducibility has not adequately been used as an essential criterion for 
evaluating the pros and cons of statistical methods for identifying DEGs.  Demonstrating 
reproducible performance is critical to the acceptance of microarray-based data in clinical and 
regulatory environments.  We anticipate that the editors of [the journal] will consider the 
potential positive impact on the scientific community in considering this work for publication. 
 
We would like to emphasize the following: 
 
1. The focus of our work is the reproducibility of lists of putatively differentially expressed 

genes (DEGs) in microarray studies.   
2. The apparent lack of reproducibility of such DEGs has been used as scientific evidence to 

criticize microarray technology.  
3. Despite the availability of numerous statistical methods for the identification of DEGs, the 

simple t-statistic (and slight variations) is arguably still the most widely used test statistic, 
and many of the various methods that exist to create lists of DEGs primarily improve upon 
the inference from this basic test statistic.  This includes the simple unmodified two-sample t-
test, Bonferroni and step-up/step-down procedures applied to the t-test, and others. We also 
note that a ranking criterion based on the t-statistic or the P-value derived from it is 
equivalent.   

4. Statistical significance (P) derived from the simple two-group t-test has historically been 
widely used as the only criterion to identify DEGs, often with disappointing results related to 
reproducibility when it has been measured. 

5. Our work was not intended to serve as a comprehensive performance survey of different 
statistical procedures.  Such a survey is not within the scope of our work and by itself 
constitutes a separate large study. 

6. We are NOT claiming that a concurrent use of FC ranking combined with a P threshold is the 
ultimate and best way of identifying DEGs in all circumstances.  Instead, it appears to be a 
reasonable, straightforward (baseline) analysis procedure that can be used to enhance the 
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reproducibility of DEG lists, especially if the microarray-based experiment is to be reviewed 
in a clinical or regulatory environment. 

 
A good understanding of these factors is critical for the peer reviewers, editors, and readers to 
better appreciate the urgency of the issue being addressed in this work and its important 
contribution to the microarray field. 
 
To clarify the overall goals of this paper and of the MAQC study as a whole, we have made 
some modifications throughout the manuscript to emphasize the focus on the reproducibility of 
lists of differentially expressed genes.  We also now provide a self-contained description of the 
design of the MAQC study.  For example, we have modified the Abstract to read:  
 
Abstract: 
Reproducibility is a fundamental requirement in scientific experiments and clinical contexts.  
Recent publications raise concerns about the reliability of microarray technology because of the 
apparent lack of agreement between lists of differentially expressed genes (DEGs).  In this study 
we demonstrate that (1) such discordance may stem from ranking and selecting DEGs solely by 
statistical significance (P) derived from widely used simple t-tests; (2) when fold change (FC) is 
used as the ranking criterion, the lists become much more reproducible, especially when fewer 
genes are selected; and (3) the instability of short DEG lists based on P cutoffs is an expected 
mathematical consequence of the high variability of the t-values.  We recommend the use of FC 
ranking plus a non-stringent P cutoff as a baseline practice in order to generate more 
reproducible DEG lists.  The FC criterion enhances reproducibility while the P criterion balances 
sensitivity and specificity. 
 
Additionally, we added a paragraph and modified a sentence in the Introduction that clearly 
states that: 
 
“The MAQC study was specifically designed to address these previously identified sources of 
variability in DEG lists.  Two very different RNA samples, Stratagene Universal Human 
Reference RNA and Ambion Human Brain Reference RNA, with thousands of differentially 
expressed genes, were prepared in sufficient quantities and distributed to three different 
laboratories for each of the five different commercial whole genome microarray platforms 
participating in the study.  For each platform, each sample was analyzed using five technical 
replicates with standardized procedures for sample processing, hybridization, scanning, data 
acquisition, data preprocessing, and data normalization at each site.  The probe sequence 
information was used to generate a stringent mapping of genes across the different platforms and 
906 genes were further analyzed with TaqMan® assays using the same RNA samples.  
 
A careful analysis of these MAQC data sets, along with numerical simulations and mathematical 
arguments, demonstrates that the reported lack of reproducibility of DEG lists can be attributed 
in large part to identifying DEGs from simple t-tests without consideration of FC when sample 
numbers are small.  The finding holds for intra-laboratory, inter-laboratory, and cross-platform 
comparisons independent of sample pairs and normalization methods, and is increasingly 
apparent with decreasing number of genes selected.” 

Response to reviewer #1’s comments: 2/12 

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

07
.3

06
.1

 : 
P

os
te

d 
29

 J
un

 2
00

7



Shi L. et al., Point-by-Point Response [MAQC MS-6] 

Point-by-Point Response to Reviewer #1 
 
Note: The reviewer’s original comments/questions are in Arial font and the authors’ response is 
in Roman font.  The reviewer’s comments are numbered for convenience in authors’ response.  
Text changes to the manuscript are indicated in blue fonts. 
 
 
1. It is well known that the microarray-based gene expression profiling experiments can 

result in very different lists of differentially expressed genes (DEGs), depending on 
what microarray platform is used and on which laboratory (or individual 
experimenter) performs the microarray experiments. Since differences in the lists of 
genes reported as being differentially expressed for a given type of experiment is at 
times a topic of very hot debate when expression profiling studies conflict, this study 
sheds light on the reasons for possible observed differences.  

 
Response:  
 
We appreciate the reviewer’s recognition of the importance of the topic that has been addressed 
in our manuscript on the reproducibility of lists of differentially expressed genes (DEGs) and the 
general assessment of our manuscript that “sheds light on the reasons for possible observed 
differences [in DEG lists]”. 
 
2. In this manuscript the authors focus on the reproducibility of lists of DEGs. In 

particular, they claim that such discordance in DEG lists is due to "ranking and 
selecting DEGs solely by statistical significance such as by P from simple t-tests". 
Although the authors state that their objective is to explain a major reason for lack of 
reproducibility in lists of DEGs, they actually conclude with recommendations to use 
a combination of fold-change ranking and P-value cutoff, but they haven't gone so 
far as to discuss how exactly such a combination would be set based upon an 
optimization of sensitivity and specificity; it is not appropriate to simply set these 
cutoffs based on optimizations of percentage of overlapping genes (POG). Simply 
improving the reproducibility of DEGs is not of itself what the scientific community 
needs most. Instead, there is a need for more accurate lists of DEGs, and these lists 
may differ from platform to platform, or laboratory to laboratory. Optimizing for the 
POG is in essence simply identifying the "lowest common denominator". Using 
approaches that simply make the lists of DEGs more uniform across platforms and 
laboratories may reduce the number of biologically significantly DEGs that are 
reported, and that could be a real loss in terms of identification of important DEGs. 
Although it is interesting to see what kinds of combined cutoffs may improve the 
reproducibility of lists of DEGs, this gets around the issue of how to accurately report 
the biologically significantly DEGs. Indeed, many important, biologically significantly 
DEGs may be changed at subtle fold change (FC) levels, including those with less 
than 2-fold changes (see Hughes et al., Cell, 2000 Jul 7;102(1):109-26). The authors 
actually conclude with a recommendation that "the practice of using P alone for gene 
selection should be discouraged". What is the tradeoff between loss in sensitivity & 
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specificity, and DEG list reproducibility obtained by concurrent use of fold-change 
ranking and P value?  

 
Response:  
 
Previously, the focus of microarray data analysis has been on specificity and sensitivity.  
Reproducibility is a third, critical dimension that is distinct from specificity and sensitivity, and 
is equally if not more important in certain experimental and regulatory contexts.  Unfortunately, 
reproducibility has not been used as an essential criterion for evaluating the pros and cons of 
statistical methods for identifying DEGs. 
 
The reviewer states that “they haven't gone so far as to discuss how exactly such a combination 
would be set based upon an optimization of sensitivity and specificity.”  This point is strongly 
related to another question that the reviewer asked later in the same paragraph, and so our 
response to this statement and the later question is combined and provided at the end of this 
section.  
 
While we agree with the reviewer that “there is a need for more accurate lists of DEGs”, the 
second half of the sentence “and these lists may differ from platform to platform, or laboratory 
to laboratory” appears to imply that it is normal for different platforms or laboratories to 
generate different DEG results from the same RNA samples.  In discovery, it is reasonable to 
continually encounter partial answers which may lead to further investigations or spawn an 
experiment that ultimately leads to a larger truth. However, there are other contexts which we 
have stated previously where such variation is at best undesired and at worst unacceptable.  
 
We agree with the reviewer that genes with “subtle fold change (FC)” may be indeed 
biologically important.  However, what our study shows is that genes with smaller fold changes 
from one platform or laboratory are, in general, less likely reproducible in another laboratory 
with the same or different platforms.  This is in fact an issue of the assumptions and criteria used 
to establish the detection limit for FC estimation by different microarray technologies.  Not 
unlike other methodologies for genes identified at the threshold of detection and/or reflecting 
small perturbations in biological levels and/or based on small number of samples, we may have 
to acknowledge the reality of variability in the results.  Importantly, in a microarray study there 
are usually many genes on an array representing genetic networks that can be utilized in 
confirmatory work to build confidence in a finding.  A “screening or filtering” procedure that 
enhances reproducibility is practical and essential for derivation of optimized robust signatures 
for specific applications, e.g. diagnostics.  A real challenge for microarrays is the development of  
improved methods that can reliably and repeatedly differentiate truly biologically important 
genes with small FCs from those genes with small FCs as a result of random fluctuations or by 
chance. 
 
We believe that truly differentially expressed genes should be more likely identified as 
differentially expressed by different platforms and from different laboratories than those genes 
with no differential expression between sample groups.  In the microarray field, we usually do 
not have the luxury of knowing the “truth” in a given study.  Therefore, it is not surprising that 
most microarray studies and data analysis protocols have not been adequately evaluated against 
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the “truth”.  A reasonable surrogate of such “truth” could be the consensus of results from 
different microarray platforms, from different laboratories using the same platform, or from 
independent methods such as TaqMan® assays, as we have extensively explored in this study. 
 
The reviewer revised an earlier stated concern and asked a very good question on the “tradeoff 
between loss in sensitivity & specificity, and DEG list reproducibility obtained by concurrent use 
of fold-change ranking and P value” as well as the concern that “Optimizing for the POG is in 
essence simply identifying the ‘lowest common denominator.’”  We feel that reproducibility is 
not “simple” as it is the subject of so many scientific papers.  The focus of our study has been the 
exploration of the issue of reproducibility, the apparent lack of which has been used at times to 
question the reliability of microarray technologies.  The limitation of the scope of our study 
prevented us from going any further on the tradeoff between loss of sensitivity & specificity and 
the gain in DEG reproducibility.  However, there are cases where there is no loss or tradeoff in 
sensitivity or specificity when one sets a limit on the number of genes for further consideration 
(as is often done in many biological studies) when faced with hundreds or thousands of putative 
DEGs.  Our recommendation of a combined FC ranking and P-value cutoff for identifying DEGs 
enhances reproducibility due to the use of FC, the quantity measured by microarrays, in ranking 
genes and the use of a reasonable P-value cutoff to address significance and 
specificity/sensitivity.  If sensitivity is the primary focus, a less stringent P-value cutoff should 
be applied.  A more stringent P-value cutoff increases specificity. Ultimately the trade-off one 
accepts is based on the specific question one is asking or the need being addressed.  For instance, 
in diagnostic development, robust signatures that are highly reproducible and accurate may be 
developed that completely omit biological information that is at the limit of detection or 
representing small changes in expression.  Although that information may be of further interest 
in the realm of drug target discovery, the signature used in the diagnostic assay serves a different 
purpose.  Finally, identifying the “lowest common denominator” has potentially both negative 
and positive attributes depending on context.  In our context, this attribute would be positive, 
implying that there is enhanced probability of independent confirmation of the result. 
 
Actions taken:  
 
(1) We have revised the text in Abstract, Introduction, and Discussion to further emphasize the 
focus of the study: the reproducibility of DEG lists. 
 
(2) A paragraph has been added to Discussion (p.10) regarding “subtle fold change” with a 
citation to the work of TR Hughes et al. mentioned by the reviewer:  

“This study shows that genes with smaller expression fold changes generated from one platform 
or laboratory are, in general, less reproducible in another laboratory with the same or different 
platforms.  However, it should be noted that genes with small fold changes may be biologically 
important43. When a fixed FC cutoff is chosen, sensitivity could be sacrificed for reproducibility.  
Alternatively, when a high P cutoff (or no P cutoff) is used, specificity could be sacrificed for 
reproducibility. Ultimately, the acceptable trade-off is based on the specific question being asked 
or the need being addressed. When searching for a few reliable biomarkers, high FC and low P 
cutoffs can be used to produce a highly specific and reproducible gene list.  When identifying the 
components of genetic networks involved in biological processes, a lower FC and higher P cutoff 
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can be used to identify larger, more sensitive but less specific, gene lists.  In this case additional 
biological information about putative gene functions can be incorporated to identify reliable 
gene lists that are specific to the biological process of interest.” 

(3) A paragraph has been added to Discussion (p.10) regarding “accurate list of DEGs”:  
 
“Truly differentially expressed genes should be more likely identified as differentially expressed 
by different platforms and from different laboratories than those genes with no differential 
expression between sample groups.  In the microarray field, we usually do not have the luxury of 
knowing the “truth” in a given study.  Therefore, it is not surprising that most microarray 
studies and data analysis protocols have not been adequately evaluated against the “truth”.  A 
reasonable surrogate of such “truth” could be the consensus of results from different microarray 
platforms, from different laboratories using the same platform, or from independent methods 
such as TaqMan® assays, as we have extensively explored in this study.” 
 
 
Some more specific comments follow below:  
 
3. The aspect of this study that examines the impact of CV (coefficient of variation) on 

reproducibility due to the combined use of FC and P-value cutoff is useful. I'd like to 
see a more in-depth analysis of the tradeoff between loss in sensitivity and DEG list 
reproducibility obtained by concurrent use of fold-change ranking and P value, at 
various CV values? The authors even make an intriguing statement that touches on 
this issue, in discussing analysis of their simulated data: "Although P ranking 
generally resulted in very low POG, a false positive was rarely produced, even for a 
list size of 500 (data not shown)."  

 
Response:  
 
The simulation part of the study was not designed to examine trade-offs between sensitivity and 
DEG list reproducibility.  For example, sensitivity as defined by  
 

Sensitivity = # true positives / (# true positives + # false negatives) 
 

would be very similar for most methods as the number of false negatives would tend to be very 
large in all cases.  That is, each simulation scenario had thousands of true DEGs, but list sizes 
were restricted (10, 50, 100, 500) to the point that false negatives would dominate the sensitivity 
measure. 
 
Perhaps a later paper could consider a related metric to sensitivity called PPV (or positive 
predicted value) which is 
 

PPV = # true positives / (# true positives + # false positives) 
 
4. Various investigators analyzing microarray data are aware that genes with low 

transcript levels are going to have more highly variable data, and thus impose a 
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minimum signal intensity threshold requirement (beyond that of just the array 
manufacturers' minimal criteria for a "Present" call), so that any genes below that 
threshold are filtered from further consideration. Did the authors explore the effect of 
such filters on the reproducibility of lists of DEGs using just P-value cutoffs, or 
possibly calculating a P-value that is dependent upon the magnitude of the signal 
intensity?  

 
Response:  
 
We agree that it is a common practice of using a more or less arbitrary intensity threshold as a 
filter to exclude more variable data points in microarray data analysis.  We compared the impact 
of this further filtering procedure in addition to the “majority present” filtering procedure on 
POGs for P-value and FC based gene selection methods.  As expected, there is an increase in 
POG for FC based gene selection.  In addition, FC ranking continues to produce much better 
POG results compared to t-test P-value.  An example figure for inter-site comparing AFX test 
sites is provided for the reviewer’s information (Figure R1-A).  
 

 
Figure R1-A. Gene selection methods determine the inter-site concordance of differentially 
expressed genes even after aggressive data filtering.  Affymetrix data on samples A and B 
from the three test sites for the “12,091” commonly mapped genes were used.  Two rounds of 
“filtering” were applied: first, genes that were called “Absent” by manufacturer’s criteria in the 
majority of replicates (three of five) for either sample A or sample B were excluded; second, an 
average intensity was calculated across the ten arrays for each of the remaining genes, and 50% 
of which with the lowest average intensity were further excluded. 
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5. No formula is provided to inform readers how POG is calculated. If the overlap 
between one list of 100 genes and another list of 200 genes is 50, then is the POG 
50%, 25%, or 50/250 = 20%?  

 
Response:  
 
We thank the reviewer for bringing this to our attention.  The formula for calculating POG is as 
follows:  
 

POG = 100*(DD+UU)/2L 
 
where DD and UU are the number of commonly down- or up-regulated genes, respectively, from 
the two lists, and L is the number of genes selected from the up- or down-regulation 
directionality.  To overcome the kind of confusion (i.e., different numbers for the denominator) 
raised by the reviewer, in our POG calculations we deliberately selected an equal number of 
genes, L, in the up- and down-regulation directionalities. 
 
Actions taken:  
 
(1) A paragraph has been added to Methods to describe the formula (p.13): 
 
“The formula for calculating POG is: POG = 100*(DD+UU)/2L, where DD and UU are the 
number of commonly down- or up-regulated genes, respectively, from the two lists, and L is the 
number of genes selected from the up- or down-regulation directionality.  To overcome the 
confusion of different numbers for the denominator, in our POG calculations we deliberately 
selected an equal number of genes, L, in the up- and down-regulation directionalities.” 
 
6. The authors show data for POG when comparing to a Taqman datase for 906 genes, 

but no information is provided for how this dataset was generated, in particular, what 
criteria were used to identify the list of genes differentially expressed according to 
the Taqman data.  

 
Response:  
 
We thank the reviewer for bringing this to our attention.   
 
Actions taken:  
 
(1) A sentence was modified on p.5 to more clearly describe the mapping of TaqMan assays to 
microarrays. 
 
 (2) A sentence was added on p.6 to describe how DEGs were identified for TaqMan data:  
 
“There are four TaqMan® assays technical replicates for each sample and the DEGs for 
TaqMan® assays were identified using the same six gene selection procedures as those used for 
microarray data.” 
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7. It would be highly informative to see a direct comparison of the use of false 

discovery rate (FDR) criterias versus results obtained using the authors' 
recommended use of a combination of fold-change and P-value cutoffs.  

 
Response:  
 
This is a good suggestion and was discussed intensively during the early stage of manuscript 
preparation.  There are many methods for estimating FDR.  Many of these methods start with test 
statistics which are either the t-statistic itself or a slightly modified version.  However, typically 
these same FDR methods do not change the ranking order of genes determined by the P-values.  
They instead monotonically transform the P-value or test statistic information into the more 
useful q or FDR.  So, in terms of DEG ranking order, many FDR methods are often equivalent to 
using the P-value.  For SAM, which uses the modified or shrunken t-statistic, we have addressed 
this directly by including the shrunken t-statistic in our simulations and in some examples.  We 
have seen that lists generated from the shrunken t-statistic generally improves reproducibility 
over using the P-value by itself but any list using FDR ranking from the shrunken t-statistic 
would still be less reproducible than using lists based on FC ordering with a P-value threshold 
for the scenarios studied and simulated. 
 
Some minor comments follow below:  
 
8. This manuscript needs to be proofread. There is at least one sentence that can not 

be understood: "Importantly, noise filtering does not either trend or magnitude of 
higher POG graphs for FC ranking compared with P-ranking."  

 
Response:  
 
We thank the reviewer for bringing this to our attention.  The revised manuscript has been 
carefully proofread by several coauthors. 
 
Actions taken:  
 
(1) Several grammatical and typo errors have been corrected. 
 
9. Why is the number of DEGs (the label for the x-axis in Figure 1) set equal to 2L? 

The number of up-regulated genes need not equal the number of down-regulated 
genes.  

 
Response:  
 
Please refer to our response to comment #5. 
 
10. There is no explanation of the dotted lines in Figures 1, 2, and 3. There is also no 

explanation of what is shown in a dotted ovals in Figure 2.  
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Response:  
 
We thank the reviewer for bringing this to our attention. 
 
Actions taken:  
 
(1) A sentence was added to the Fig. 3 legend (p.19) to describe the dotted POG lines 
(explanations on dotted POG lines were available for Figs. 1 and 2 in the original manuscript’s 
figure legends): 
 
“Each POG line corresponds to comparison of the DEGs from one microarray platform and 
those from the TaqMan® assays using one of the six gene selection methods.” 
 
(2) A sentence was added to the Fig. 2 legend (p.19) to describe the ovals that indicate the FC 
and P-value based POG lines: 
 
“POG lines circled by the blue oval are from FC based gene selection methods with or without a 
P-value cutoff, and POG lines circled by the teal oval are from P-value based gene selection 
methods with or without an FC cutoff.” 
 
11. There is no explanation of the color scheme used in Figure 5. 
 
Response: 
 
We thank the reviewer for bringing this to our attention. 
 
Actions taken: 
 
(1) A sentence was added to the figure legend (p.21) to describe the color scheme.  Please note 
that this figure is now moved to the supplementary information as Supplementary Figure 5: 
 
“The colors correspond to the negative log10 P and log2 fold change values.  
Red (●): 20<-log10 P<50 and 3<log2 fold<9 or -9< log2 fold <-3  
Blue (●):  10<-log10 P<50 and 2<log2 fold<3 or -3<log2 fold<-2  
Yellow (●):  4<-log10 P<50 and 1<log2 fold<2 or -2<log2 fold<-1 
Pink (●):  10<-log10 P<20 and 3<log2 fold or log2 fold<-3   
Light blue (●):  4<-log10 P<10 and 2<log2 fold or log2 fold<-2  
Light green (●):  2<-log10 P<4 and 1<log2 fold or log2 fold<-1  
Gray (●):   -log10 P<2 or log2 fold<1 and log2 fold>-1” 
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Begin of original comments: 
 
Reviewer #1(Remarks to the Author):  
 
It is well known that the microarray-based gene expression profiling 
experiments can result in very different lists of differentially 
expressed genes (DEGs), depending on what microarray platform is used 
and on which laboratory (or individual experimenter) performs the 
microarray experiments. Since differences in the lists of genes 
reported as being differentially expressed for a given type of 
experiment is at times a topic of very hot debate when expression 
profiling studies conflict, this study sheds light on the reasons for 
possible observed differences.  
 
In this manuscript the authors focus on the reproducibility of lists 
of DEGs. In particular, they claim that such discordance in DEG lists 
is due to "ranking and selecting DEGs solely by statistical 
significance such as by P from simple t-tests". Although the authors 
state that their objective is to explain a major reason for lack of 
reproducibility in lists of DEGs, they actually conclude with 
recommendations to use a combination of fold-change ranking and P-
value cutoff, but they haven't gone so far as to discuss how exactly 
such a combination would be set based upon an optimization of 
sensitivity and specificity; it is not appropriate to simply set these 
cutoffs based on optimizations of percentage of overlapping genes 
(POG). Simply improving the reproducibility of DEGs is not of itself 
what the scientific community needs most. Instead, there is a need for 
more accurate lists of DEGs, and these lists may differ from platform 
to platform, or laboratory to laboratory. Optimizing for the POG is in 
essence simply identifying the "lowest common denominator". Using 
approaches that simply make the lists of DEGs more uniform across 
platforms and laboratories may reduce the number of biologically 
significantly DEGs that are reported, and that could be a real loss in 
terms of identification of important DEGs. Although it is interesting 
to see what kinds of combined cutoffs may improve the reproducibility 
of lists of DEGs, this gets around the issue of how to accurately 
report the biologically significantly DEGs. Indeed, many important, 
biologically significantly DEGs may be changed at subtle fold change 
(FC) levels, including those with less than 2-fold changes (see Hughes 
et al., Cell, 2000 Jul 7;102(1):109-26). The authors actually conclude 
with a recommendation that "the practice of using P alone for gene 
selection should be discouraged". What is the tradeoff between loss in 
sensitivity & specificity, and DEG list reproducibility obtained by 
concurrent use of fold-change ranking and P value?  
 
Some more specific comments follow below:  
 
The aspect of this study that examines the impact of CV (coefficient 
of variation) on reproducibility due to the combined use of FC and P-
value cutoff is useful. I'd like to see a more in-depth analysis of 
the tradeoff between loss in sensitivity and DEG list reproducibility 
obtained by concurrent use of fold-change ranking and P value, at 
various CV values? The authors even make an intriguing statement that 
touches on this issue, in discussing analysis of their simulated data: 
"Although P ranking generally resulted in very low POG, a false 
positive was rarely produced, even for a list size of 500 (data not 
shown)."  
 

Response to reviewer #1’s comments: 11/12 
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Various investigators analyzing microarray data are aware that genes 
with low transcript levels are going to have more highly variable data, 
and thus impose a minimum signal intensity threshold requirement 
(beyond that of just the array manufacturers' minimal criteria for a 
"Present" call), so that any genes below that threshold are filtered 
from further consideration. Did the authors explore the effect of such 
filters on the reproducibility of lists of DEGs using just P-value 
cutoffs, or possibly calculating a P-value that is dependent upon the 
magnitude of the signal intensity?  
 
No formula is provided to inform readers how POG is calculated. If the 
overlap between one list of 100 genes and another list of 200 genes is 
50, then is the POG 50%, 25%, or 50/250 = 20%?  
 
The authors show data for POG when comparing to a Taqman datase for 
906 genes, but no information is provided for how this dataset was 
generated, in particular, what criteria were used to identify the list 
of genes differentially expressed according to the Taqman data.  
 
It would be highly informative to see a direct comparison of the use 
of false discovery rate (FDR) criterias versus results obtained using 
the authors' recommended use of a combination of fold-change and P-
value cutoffs.  
 
Some minor comments follow below:  
 
This manuscript needs to be proofread. There is at least one sentence 
that can not be understood: "Importantly, noise filtering does not 
either trend or magnitude of higher POG graphs for FC ranking compared 
with P-ranking."  
 
Why is the number of DEGs (the label for the x-axis in Figure 1) set 
equal to 2L? The number of up-regulated genes need not equal the 
number of down-regulated genes.  
 
There is no explanation of the dotted lines in Figures 1, 2, and 3. 
There is also no explanation of what is shown in a dotted ovals in 
Figure 2.  
 
There is no explanation of the color scheme used in Figure 5.  
 
 

End of original comments 
 
 

Response to reviewer #1’s comments: 12/12 
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Response to reviewer #2’s comments: 1/9 

Point-by-Point Response to Peer Reviewer #2’ Comments 
 
Manuscript:  [MAQC MS-6] 
Title:   The reproducibility of lists of differentially expressed genes in microarray studies 
Corresponding author: Leming Shi (leming.shi@fda.hhs.gov)  
Date:   July 13, 2006 
 
 
General Response to Peer Reviewer #2 
 
New statistical methods for the identification of differentially expressed genes (DEGs) continue 
to appear in the scientific literature.  In fact, the variety of existing and emerging methods has 
caused some confusion in the research community.  These methods are typically promoted in 
terms of improved sensitivity (power) under various assumptions or conditions while retaining 
nominal rates of specificity.  Reproducibility is a fundamental requirement in scientific 
experiments and clinical contexts, but is seldom emphasized in microarray literature.  
Reproducibility is a critical third dimension that is distinct from specificity and sensitivity. It is 
equally if not more important than sensitivity and specificity in certain experimental and clinical 
contexts. Until recently reproducibility has not adequately been used as an essential criterion for 
evaluating the pros and cons of statistical methods for identifying DEGs.  Demonstrating 
reproducible performance is critical to the acceptance of microarray-based data in clinical and 
regulatory environments.  We anticipate that the editors of [the journal] will consider the 
potential positive impact on the scientific community in considering this work for publication. 
 
We would like to emphasize the following: 
 
1. The focus of our work is the reproducibility of lists of putatively differentially expressed 

genes (DEGs) in microarray studies.   
2. The apparent lack of reproducibility of such DEGs has been used as scientific evidence to 

criticize microarray technology.  
3. Despite the availability of numerous statistical methods for the identification of DEGs, the 

simple t-statistic (and slight variations) is arguably still the most widely used test statistic, 
and many of the various methods that exist to create lists of DEGs primarily improve upon 
the inference from this basic test statistic.  This includes the simple unmodified two-sample t-
test, Bonferroni and step-up/step-down procedures applied to the t-test, and others. We also 
note that a ranking criterion based on the t-statistic or the P-value derived from it is 
equivalent.   

4. Statistical significance (P) derived from the simple two-group t-test has historically been 
widely used as the only criterion to identify DEGs, often with disappointing results related to 
reproducibility when it has been measured. 

5. Our work was not intended to serve as a comprehensive performance survey of different 
statistical procedures.  Such a survey is not within the scope of our work and by itself 
constitutes a separate large study. 

6. We are NOT claiming that a concurrent use of FC ranking combined with a P threshold is the 
ultimate and best way of identifying DEGs in all circumstances.  Instead, it appears to be a 
reasonable, straightforward (baseline) analysis procedure that can be used to enhance the 
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Response to reviewer #2’s comments: 2/9 

reproducibility of DEG lists, especially if the microarray-based experiment is to be reviewed 
in a clinical or regulatory environment. 

 
A good understanding of these factors is critical for the peer reviewers, editors, and readers to 
better appreciate the urgency of the issue being addressed in this work and its important 
contribution to the microarray field. 
 
To clarify the overall goals of this paper and of the MAQC study as a whole, we have made 
some modifications throughout the manuscript to emphasize the focus on the reproducibility of 
lists of differentially expressed genes.  We also now provide a self-contained description of the 
design of the MAQC study.  For example, we have modified the Abstract to read:  
 
Abstract: 
Reproducibility is a fundamental requirement in scientific experiments and clinical contexts.  
Recent publications raise concerns about the reliability of microarray technology because of the 
apparent lack of agreement between lists of differentially expressed genes (DEGs).  In this study 
we demonstrate that (1) such discordance may stem from ranking and selecting DEGs solely by 
statistical significance (P) derived from widely used simple t-tests; (2) when fold change (FC) is 
used as the ranking criterion, the lists become much more reproducible, especially when fewer 
genes are selected; and (3) the instability of short DEG lists based on P cutoffs is an expected 
mathematical consequence of the high variability of the t-values.  We recommend the use of FC 
ranking plus a non-stringent P cutoff as a baseline practice in order to generate more 
reproducible DEG lists.  The FC criterion enhances reproducibility while the P criterion balances 
sensitivity and specificity. 
 
Additionally, we added a paragraph and modified a sentence in the Introduction that clearly 
states that: 
 
 “The MAQC study was specifically designed to address these previously identified sources of 
variability in DEG lists.  Two very different RNA samples, Stratagene Universal Human 
Reference RNA and Ambion Human Brain Reference RNA, with thousands of differentially 
expressed genes, were prepared in sufficient quantities and distributed to three different 
laboratories for each of the five different commercial whole genome microarray platforms 
participating in the study.  For each platform, each sample was analyzed using five technical 
replicates with standardized procedures for sample processing, hybridization, scanning, data 
acquisition, data preprocessing, and data normalization at each site.  The probe sequence 
information was used to generate a stringent mapping of genes across the different platforms and 
906 genes were further analyzed with TaqMan® assays using the same RNA samples.  
 
A careful analysis of these MAQC data sets, along with numerical simulations and mathematical 
arguments, demonstrates that the reported lack of reproducibility of DEG lists can be attributed 
in large part to identifying DEGs from simple t-tests without consideration of FC when sample 
numbers are small.  The finding holds for intra-laboratory, inter-laboratory, and cross-platform 
comparisons independent of sample pairs and normalization methods, and is increasingly 
apparent with decreasing number of genes selected.” 
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Response to reviewer #2’s comments: 3/9 

Point-by-Point Response to Reviewer #2 
 
Note: The reviewer’s original comments/questions are in Arial font and the authors’ response is 
in Roman font.  The reviewer’s comments are numbered for convenience in authors’ response.  
Text changes to the manuscript are indicated in blue fonts. 
 
 
1. This manuscript, produced by the MAQC project, addresses a very important 

question of reproducibility of groups of markers identified from microarray studies. 
Although the question addressed is a critical one, the manuscript falls far short of 
addressing it to any extent due to serious flaws in the methodology used.  

 
Response:  
 
We appreciate the reviewer’s recognition of the importance of the topic that has been addressed 
in our manuscript on the reproducibility of lists of differentially expressed genes (DEGs).  
Several PhD statisticians in the MAQC project initially expressed similarly strong doubts and 
arguments that the proposed methodology is flawed and/or ignores well trusted statistical 
principles.  After review of data and extensive discourse, a critical consensus was reached that 
reproducibility is a third dimension needing optimization together with sensitivity and specificity.  
When high reproducibility is of primary concern, giving increased weight to the estimated fold 
change is necessary.  If the rationale presented here is flawed, we would very much appreciate 
receiving a more detailed rebuttal.   
 
2. The manuscript's main claim is that fold change, not p-values, should be used to 

order differentially expressed genes (and p-values used to evaluate sens/spec). This 
claim is weak to begin with due to numerous statistical and practical arguments, and 
has been previously published by the authors in proceedings of Second Annual 
MidSouth Computational Biology and Bioinformatics Society Conference. This new 
dataset, while impressive, does not support their claim further due to flaws in their 
comparison methodology.  

 
Response:  
 
We agree with the reviewer’s assessment that our new data set is “impressive”, and we would 
argue this data set and associated simulations provide a reasonable context within which to 
discuss the critical issue of reproducibility.  We recommend a joint fold change / p-value rule, 
and when it is applied in practice, researchers are free to order the resulting gene list by either 
fold change or p-value, depending on ranking objectives.  When the reproducibility of lists of 
DEGs is the major objective, FC ranking produces much more reproducible results.  The 
arguments and points made in this paper represent significant refinements over those in the 
proceedings of Second Annual MidSouth Computational Biology and Bioinformatics Society 
Conference (Shi L et al., BMC Bioinformatics. 2005 Jul 15;6 Suppl 2:S12). 
   
3. First and foremost, the authors use 2-tailed t-test as the statistical test to compare 

against. As the authors correctly note, this is indeed not the right test to use for small 
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Response to reviewer #2’s comments: 4/9 

datasets (because normality assumption doesn't hold), and in general this is not a 
state-of-the-art statistical method for this problem. What about trying a rank-based 
test or one of the newer methods such as SAM etc? 

 
Response:  
 
We believe that the reviewer has misunderstood our claim “The MAQC data sets and simulations 
are used to demonstrate that the reported lack of reproducibility of DEG lists can be attributed 
in large part to identifying DEGs from simple t-tests without consideration of FC when sample 
numbers are small.” (p.3, Introduction of the original manuscript).  We are not saying that the t-
test is “not right” or inappropriate.  What we are saying is that t-tests used as the sole ranking 
criterion for generating gene lists is inappropriate if the desire is to also create reproducible 
results.  To reiterate, the simple t-test has often been used previously for identifying DEGs in 
published reports that criticized the microarray technologies due to the apparent lack of 
reproducibility of DEG lists.   
 
In our study, we set out to demonstrate and explain why the instability of short gene lists based 
on the t-test alone is a fundamental mathematical problem (as described in the “Insert” on p.14 of 
the original manuscript) that we clearly illustrate with the MAQC data and the simulations.  This 
issue is independent of platform or site-to-site variability. 
 
We agree with the reviewer that, in a variety of contexts, DEGs may be identified using 
numerous different statistical tests including rank tests (e.g., Wilcoxon rank-sum test) and 
shrunken t-tests (e.g., SAM).  These methods are typically promoted in terms of improved 
sensitivity (power) while retaining nominal rates of specificity.  Reproducibility is a fundamental 
requirement in scientific experiments and clinical contexts, but is seldom emphasized in 
microarray literature.  However, our work was not intended to serve as a comprehensive 
performance survey of different statistical procedures.  Although valuable, such a survey is out 
of the scope of this work and would be a different large study. 
 
It should also be emphasized that despite the publication of numerous new statistical methods for 
the identification of DEGs, the simple t-test is arguably still the most widely used approach by 
the general microarray community.  Also, with five technical replicates at each site, our sample 
sizes are not extremely small, especially when modeling data from all sites simultaneously. 
Analysis of residuals on log2 normalized signals (not shown) reveals that the assumption of 
normality--separately for each gene--is not unreasonable for these data. 
 
Rank-based test:  
 
We agree with the reviewer that a rank-based test (e.g., Wilcoxon rank-sum test) is a better 
choice than the simple t-test when the normality assumption is violated.  As mentioned above, 
this assumption does not appear to be violated here; but we did still explore rank-based analyses.  
When considering data from only one site (five replicates for each group in the microarray 
experiments); there are many ties in the rank test statistic.  In fact, the Wilcoxon rank-sum test 
statistic takes on only 26 distinct values (from 15 to 40), and the smallest P-value is 0.0079 (two-
sided, exact tests).  Therefore, using a Wilcoxon rank-sum test for data sets of such small 
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Response to reviewer #2’s comments: 5/9 

numbers of replicates (5) would create too many ties and would not effectively differentiate the 
differences among the 12,091 genes used in our analysis.  Nevertheless, in a sincere attempt to 
satisfy the reviewer, we created a POG graph using AFX inter-site comparison as an example 
(Figure 5 in the revised manuscript).  It is easy to see that the rank-sum test did not perform as 
expected by the reviewer. 
 
SAM:  
 
SAM incorporates both an FDR estimation procedure partnered with a modified (shrunken) t-
statistic (along with permutation/resampling).  If one ignores the FDR estimation method 
associated with SAM and instead focuses on the rank of the test statistic (which is essentially our 
focus) used by SAM, then one sees that SAM is indeed considered in our simulations that 
compare methods.  That is, the top 10 genes that result from SAM are the same top 10 genes that 
come from rank ordering the shrunken t-statistic.  Unfortunately, in sharp contrast to another 
reviewer, this reviewer did not appear to appreciate the value of the simulations.  Therefore, it is 
not surprising that he/she appears to have overlooked the inclusion of SAM’s test statistic in the 
simulation. 
 
Actions taken:  
 
(1) A few extra sentences justifying our choice of using simple t-test have been added to the 
Abstract, Introduction, and Conclusion.   
 
(2) In a sincere attempt to satisfy the reviewer, we created a POG graph (Figure 5, added to the 
revised manuscript) by including Wilcoxon rank-sum test using AFX site-site comparison as an 
example.  As can be easily seen from Figure 5, the SAM POG (pink line), although greatly 
improved over that of simple t-test (purple line), approached, but did not exceed, the level of 
POG based on FC ranking (green line).   
 
(3) Scatterplots of SAM d values and FCs (Figure R2-A), and a POG graph (Figure 5, added to 
revised manuscript) using AFX site-site comparison were created as an example.  As can be 
easily seen from Figure 5, the SAM POG (pink line), although greatly improved over that of 
simple t-test (purple line), approached, but did not exceed, the level of POG based on FC ranking 
(green line).  This is consistent with the correlation of the log2 FC and SAM d values (Table R2-
A).  In summary, SAM did not appear to make microarray data (in terms of DEG lists or SAM d 
values) more reproducible across laboratories.  Interestingly, in one case (the AFX data) the 
stabilization factor used in the denominator of SAM became large.  One consequence of this is 
that the denominators in the SAM test statistic become more homogeneous for all genes, and 
ranking by SAM approaches ranking by FC.  In addition, to address the reviewer’s concerns on 
the use of an “artificial data set”, we created a POG graph (Figure R2-B) from a real rat 
toxicogenomics data set (Guo et al.) using FC and SAM ranking for identifying differentially 
expressed genes.  Compared to fold change ranking, SAM reduced inter-site concordance in 
this case, a finding that is consistent with what was observed from the MAQC data sets. 
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Response to reviewer #2’s comments: 6/9 

Table R2-A: Correlation matrix of log2 FC and SAM d in inter-site comparison. 
 
  log2 FC (site 1) log2 FC (site 2) log2 FC (site 3) SAM_d (site 1) SAM_d (site 2) SAM_d (site 3) 
log2 FC (site 1) 1.0000  0.9895  0.9934  0.9989  0.9885  0.9931 
log2 FC (site 2) 0.9895  1.0000  0.9944  0.9889  0.9987  0.9947 
log2 FC (site 3) 0.9934  0.9944  1.0000  0.9919  0.9925  0.9993 
SAM_d (site 1) 0.9989  0.9889  0.9919  1.0000  0.9890  0.9924 
SAM_d (site 2) 0.9885  0.9987  0.9925  0.9890  1.0000  0.9938 
SAM_d (site 3) 0.9931  0.9947  0.9993  0.9924  0.9938  1.0000 
 
 
 
 

 
Figure R2-A: Scatter plots of SAM d values and log2FC in inter-site comparison.  
Affymetrix data on samples A and B from three test sites for the “12,091” commonly mapped 
genes were used.  No flagged (“Absent”) genes were excluded in the analysis. 
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Response to reviewer #2’s comments: 7/9 

 
Figure R2-B: SAM reduces inter-site concordance in a real toxicogenomics data set. 

 
 
4. Second, their simulated data are generated with fold change in mind. There is a 

strong basis to generation of sensible microarray data simulations in the literature 
(e.g. David Rocke's group work and others). If the authors want to use simulated 
data, they should simulate it based on distributions and error models that have been 
shown to simulate real microarray data. Fitting the simulated data to their 
expectation of it makes their conclusions completely circular.  

 
Response:  
 
We agree that the simulated data was generated with differing fold changes in mind.  We also 
had several other things in mind, such as emulating the distribution of fold change that is seen in 
the MAQC data set and in other data sets (thus the three different simulation contexts), 
simulating distributions of error in replicates seen in the MAQC data sets and other data sets, and 
considering the relationship in the variance of replicates between different sites and different 
platforms.  Therefore, we feel that our simulations are based on distributions and error models 
that do in fact emulate real microarray data.  It is somewhat puzzling to consider how one would 
simulate real microarray data and not consider/control one of the most important aspects of the 
experiment, which is the nature and distribution of fold change.  However, the simulated 
microarray data were created with no a priori expectation related to the DEG reproducibility of 
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Response to reviewer #2’s comments: 8/9 

any particular method.  In fact, many of us were quite surprised with the results initially, so it is 
incongruous to characterize the simulations as part of an analysis that fits preconceived 
expectations or provides results based on circular reasoning.   
 
 
Actions taken:  
 
(1) The Methods section is modified to describe in more detail the various factors considered that 
make the simulated microarray data emulate real microarray data. 
 
5. My other concerns have to do with the exact comparisons performed, but these 

concerns are minor compared to the two above. In fact, from my perspective the two 
problems above render main conclusions of this paper unsupported. 

 
Response:  
 
We would be happy to address any additional, specific concerns the reviewer may have on our 
work. 
 
 

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

07
.3

06
.1

 : 
P

os
te

d 
29

 J
un

 2
00

7



Shi L, Jones WD et al., Point-by-Point Response [MAQC MS-6] 

Response to reviewer #2’s comments: 9/9 

Begin of original comments: 
 
 
Reviewer #2(Remarks to the Author):  
 
This manuscript, produced by the MAQC project, addresses a very 
important question of reproducibility of groups of markers identified 
from microarray studies. Although the question addressed is a critical 
one, the manuscript falls far short of addressing it to any extent due 
to serious flaws in the methodology used.  
 
The manuscript's main claim is that fold change, not p-values, should 
be used to order differentially expressed genes (and p-values used to 
evaluate sens/spec). This claim is weak to begin with due to numerous 
statistical and practical arguments, and has been previously published 
by the authors in proceedings of Second Annual MidSouth Computational 
Biology and Bioinformatics Society Conference. This new dataset, while 
impressive, does not support their claim further due to flaws in their 
comparison methodology.  
 
First and foremost, the authors use 2-tailed t-test as the statistical 
test to compare against. As the authors correctly note, this is indeed 
not the right test to use for small datasets (because normality 
assumption doesn't hold), and in general this is not a state-of-the-
art statistical method for this problem. What about trying a rank-
based test or one of the newer methods such as SAM etc?  
 
Second, their simulated data are generated with fold change in mind. 
There is a strong basis to generation of sensible microarray data 
simulations in the literature (e.g. David Rocke's group work and 
others). If the authors want to use simulated data, they should 
simulate it based on distributions and error models that have been 
shown to simulate real microarray data. Fitting the simulated data to 
their expectation of it makes their conclusions completely circular.  
 
My other concerns have to do with the exact comparisons performed, but 
these concerns are minor compared to the two above. In fact, from my 
perspective the two problems above render main conclusions of this 
paper unsupported. 
 

End of original comments 
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Point-by-Point Response to Peer Reviewer #3’ Comments 
 
Manuscript:  [MAQC MS-6] 
Title:   The reproducibility of lists of differentially expressed genes in microarray studies 
Corresponding author: Leming Shi (leming.shi@fda.hhs.gov)   
Date:   July 13, 2006 
 
 
General Response to Peer Reviewer #3 
 
New statistical methods for the identification of differentially expressed genes (DEGs) continue 
to appear in the scientific literature.  In fact, the variety of existing and emerging methods has 
caused some confusion in the research community.  These methods are typically promoted in 
terms of improved sensitivity (power) under various assumptions or conditions while retaining 
nominal rates of specificity.  Reproducibility is a fundamental requirement in scientific 
experiments and clinical contexts, but is seldom emphasized in microarray literature.  
Reproducibility is a critical third dimension that is distinct from specificity and sensitivity. It is 
equally if not more important than sensitivity and specificity in certain experimental and clinical 
contexts. Until recently reproducibility has not adequately been used as an essential criterion for 
evaluating the pros and cons of statistical methods for identifying DEGs.  Demonstrating 
reproducible performance is critical to the acceptance of microarray-based data in clinical and 
regulatory environments.  We anticipate that the editors of [the journal] will consider the 
potential positive impact on the scientific community in considering this work for publication. 
 
We would like to emphasize the following: 
 
1. The focus of our work is the reproducibility of lists of putatively differentially expressed 

genes (DEGs) in microarray studies.   
2. The apparent lack of reproducibility of such DEGs has been used as scientific evidence to 

criticize microarray technology.  
3. Despite the availability of numerous statistical methods for the identification of DEGs, the 

simple t-statistic (and slight variations) is arguably still the most widely used test statistic, 
and many of the various methods that exist to create lists of DEGs primarily improve upon 
the inference from this basic test statistic.  This includes the simple unmodified two-sample t-
test, Bonferroni and step-up/step-down procedures applied to the t-test, and others. We also 
note that a ranking criterion based on the t-statistic or the P-value derived from it is 
equivalent.   

4. Statistical significance (P) derived from the simple two-group t-test has historically been 
widely used as the only criterion to identify DEGs, often with disappointing results related to 
reproducibility when it has been measured. 

5. Our work was not intended to serve as a comprehensive performance survey of different 
statistical procedures.  Such a survey is not within the scope of our work and by itself 
constitutes a separate large study. 

6. We are NOT claiming that a concurrent use of FC ranking combined with a P threshold is the 
ultimate and best way of identifying DEGs in all circumstances.  Instead, it appears to be a 
reasonable, straightforward (baseline) analysis procedure that can be used to enhance the 

Response to reviewer #3’s comments: 1/10 
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reproducibility of DEG lists, especially if the microarray-based experiment is to be reviewed 
in a clinical or regulatory environment. 

 
A good understanding of these factors is critical for the peer reviewers, editors, and readers to 
better appreciate the urgency of the issue being addressed in this work and its important 
contribution to the microarray field. 
 
To clarify the overall goals of this paper and of the MAQC study as a whole, we have made 
some modifications throughout the manuscript to emphasize the focus on the reproducibility of 
lists of differentially expressed genes.  We also now provide a self-contained description of the 
design of the MAQC study.  For example, we have modified the Abstract to read:  
 
Abstract: 
Reproducibility is a fundamental requirement in scientific experiments and clinical contexts.  
Recent publications raise concerns about the reliability of microarray technology because of the 
apparent lack of agreement between lists of differentially expressed genes (DEGs).  In this study 
we demonstrate that (1) such discordance may stem from ranking and selecting DEGs solely by 
statistical significance (P) derived from widely used simple t-tests; (2) when fold change (FC) is 
used as the ranking criterion, the lists become much more reproducible, especially when fewer 
genes are selected; and (3) the instability of short DEG lists based on P cutoffs is an expected 
mathematical consequence of the high variability of the t-values.  We recommend the use of FC 
ranking plus a non-stringent P cutoff as a baseline practice in order to generate more 
reproducible DEG lists.  The FC criterion enhances reproducibility while the P criterion balances 
sensitivity and specificity. 
 
Additionally, we added a paragraph and modified a sentence in the Introduction that clearly 
states that: 
 
 “The MAQC study was specifically designed to address these previously identified sources of 
variability in DEG lists.  Two very different RNA samples, Stratagene Universal Human 
Reference RNA and Ambion Human Brain Reference RNA, with thousands of differentially 
expressed genes, were prepared in sufficient quantities and distributed to three different 
laboratories for each of the five different commercial whole genome microarray platforms 
participating in the study.  For each platform, each sample was analyzed using five technical 
replicates with standardized procedures for sample processing, hybridization, scanning, data 
acquisition, data preprocessing, and data normalization at each site.  The probe sequence 
information was used to generate a stringent mapping of genes across the different platforms and 
906 genes were further analyzed with TaqMan® assays using the same RNA samples.  
 
A careful analysis of these MAQC data sets, along with numerical simulations and mathematical 
arguments, demonstrates that the reported lack of reproducibility of DEG lists can be attributed 
in large part to identifying DEGs from simple t-tests without consideration of FC when sample 
numbers are small.  The finding holds for intra-laboratory, inter-laboratory, and cross-platform 
comparisons independent of sample pairs and normalization methods, and is increasingly 
apparent with decreasing number of genes selected.” 
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Point-by-Point Response to Reviewer #3 
 
Note: The reviewer’s original comments/questions are in Arial font and the authors’ response is 
in Roman font.  The reviewer’s comments are numbered for convenience in authors’ response.  
Text changes to the manuscript are indicated in blue fonts. 
 
 
1. The manuscript begins with a brief and somewhat self-serving literature review 

pointing out problems observed in trying to find concordance across microarray 
studies but completely ignoring more recent publications, including three 
independent publications that appeared in Nature Methods in 2005 (Bammler et al. 
2005; Irizarry et al. 2005; Larkin et al. 2005), a paper that appeared in BMC 
Genomics earlier this year (Wang et al. 2006), as well as many others (e.g., Carter 
et al. 2005; Ulrich et al. 2004), that reached very different conclusions regarding the 
quality of microarray experimental results and helped to define methods to assure 
concordance between the results.  

 
Response:  
 
The reviewer appears to be concerned about the bias in the selection of references in our paper.  
For any scientific manuscript other than a review article, the authors are always faced with the 
challenge of selecting a limited number of references for citation from a much larger number of 
relevant ones.  We acknowledge that this was not an easy task.  We did survey the literature prior 
to selecting a representative set.  Unfortunately this may have excluded work that this reviewer 
finds particularly appealing based on his/her experience or involvement in this area.  Our work 
was not intended to serve as a comprehensive literature review of the publications related to the 
topic emphasized in our work – the reproducibility of lists of differentially expressed genes in 
microarray studies.  We believe that we have selected the cited references appropriately.   
  
We do not understand how and why the reviewer reached the conclusion that we were 
“completely ignoring more recent publications”.  In fact, out of the six references mentioned by 
the reviewer, two of them were cited in our manuscript:  
 
Our ref #39 = “Irizarry et al. 2005” 
Our ref #24 = “Wang et al. 2006” 
 
In addition, our ref #15 ( = Mecham et al. 2004) came from the same group (Szallasi Z) that 
published the reference mentioned by the review as “Carter et al. 2005”.  These two references 
discussed the same concept of sequence-based matching for improving cross-platform 
consistency.   
 
We note that we were very familiar with the “Bammler et al. 2005” and “Larkin et al. 2005” 
publications from the same issue of Nature Methods as our ref #39, and the “Ulrich et al. 2004” 
publications from the HESI-led study in Environ Health Perspect.  We agree that many factors 
could result in non-reproducible microarray results in terms of the lists of differentially 
expressed genes.  However, none of these publications focused on the impact that selection of 
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data reduction and analysis methods has on the reproducibility of microarray results in terms of 
lists of differentially expressed genes. 
 
2. The manuscript then presents, in an almost unreadable format populated with 

sentences that appear to composed almost entirely of acronyms, an analysis of 
artificial datasets constructed for the MAQC project and simulations to demonstrate 
that t-tests are not the best method for the analysis of microarray data. There are a 
number of problems with this analysis, not the least of which is the fact that 
simulations require a thorough understanding of the nature of the data, the 
relationships between the entities being simulated, and the nature of the structure of 
the variance in the observations. None of this is really known for microarrays and 
gene expression profiles and so a simulation can be constructed based on 
assumptions of what one wants to find that will easily verify the underlying 
assumptions  The MAQC dataset itself is also extremely problematic since it does 
not represent "real" gene expression data and consequently does not represent the 
full spectrum of inter-related patterns that appear in microarray profiles.  

 
Response:  
 
“Acronyms”:  This is a good point.  We recognize that the use of acronyms impacts the 
readability of any manuscript.  The authors debated intensively regarding whether we should 
allow limited use of acronyms in the manuscript.  The word count for the manuscript was a very 
practical consideration that led us to a compromise on this point.  In order to meet space 
limitations without compromising readability we used a limited number of acronyms in the 
manuscript and made sure that they were clearly defined twice.  The number of acronyms used in 
the manuscript is limited (mainly DEG and POG) and we clearly define the acronyms at the first 
usage after the Abstract and again adding the definition in the parentheses right after each 
acronym’s first occurrence in the text.   
 
“Simulations”:  We did not have a priori expectations for the simulation.  The results of the 
simulation were surprising to many in the project and reviewed by all (even at the source code 
level).  If the results were surprising, then it does not logically follow that the results of the 
simulation were predetermined based on “assumptions of what one wants to find”.  We have 
added text within MS-6 to describe the assumptions and patterns, error and FC distributions 
created for the simulations.  We have studied a variety of conditions that appear to greatly 
influence reproducibility in real microarray experiments: CV within group, amount of 
differential expression, size of gene list, differences between sites and platforms.  Our simulated 
distributions of error in replicates were based on what we observed in the MAQC data sets and 
other “real” data sets (e.g., toxicogenomics studies) by considering the relationship in the 
variance of replicates between different sites and different platforms.  Therefore, we feel that our 
simulations are based on distributions and error models that emulate “real” microarray data. 
 
“The MAQC dataset, …, extremely problematic”: We agree that the MAQC dataset does not 
examine a biological problem.  However, the dataset was generated using biological reference 
RNA samples and the dataset is useful for understanding conditions where platforms and/or 
laboratories agree and disagree, even in this somewhat complex case.  However, in the 
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simulations within this paper, and in a much more realistic toxicogenomics data set based on an 
actual experiment that was used to “validate” the MAQC study and submitted to Nature 
Biotechnology as an accompanying paper, we have examined a variety of scenarios that use more 
extreme data (large amounts of expression with higher magnitude of FC) and more biologically 
realistic data.  We have seen that our simulations appear to closely emulate real experimental 
results related to reproducibility.  So we have covered extreme cases, and biologically realistic 
cases in this paper.  As we have more confidence in the simulations covering both normal and 
extreme situations, we can use the simulations to examine important trade-offs between 
reproducibility, sensitivity, and specificity, something that we cannot do in most microarray 
experiments as we cannot be sure of absolute truth with real biological specimens.  We also 
should recognize that there exists no data set that represents “the full spectrum of inter-related 
patterns that appear in microarray profiles.”  However, we feel that the data sets, real and 
simulated, related to the MAQC project are very informative and thought-provoking regarding 
reproducibility.  In addition, we agree that there are important issues such as “interrelatedness of 
genes” that need to be carefully considered, but that is beyond the scope of this work. 
 
3. Nevertheless, the manuscript reaches a conclusion that anyone working in the field 

has known for years - that simple t-tests are not the best method for the analysis of 
microarray data, particularly for small sample sizes and particularly for genes 
expressed at low levels where the signal approaches the noise. This, indeed, was 
the justification for the development of SAM, an algorithm that uses pooled variance 
for genes binned by expression level to correct for this effect - and not surprisingly 
the authors find that SAM is superior to a simple t-test. The other approach the 
authors find to be superior to the t-test? Genes selected based on volcano plots. 
Again, this is not something new but a technique that has been used for quite some 
time. 
 

Response:  
 
We do not simply conclude, as the reviewer claims in both paragraph 2 and paragraph 3 of the 
review that “t-tests are not the best method for analysis of microarray data”.  This represents a 
misreading of our manuscript and misses our significant conclusion that use of the t-test alone to 
generate lists of differentially expressed genes causes the lack of reproducibility of short gene 
lists.  Starting with the Abstract we clearly state that:   
 
“To generate more reproducible DEG lists across a variety of biological, laboratory, and 
platform scenarios, the concurrent use of FC ranking and P cutoff is recommended. An FC 
criterion explicitly incorporates the measured quantity to ensure reproducibility, whereas a P 
criterion incorporates control of sensitivity and specificity.” (original manuscript) 
 
In the revised manuscript, we have modified these sentences to make our message clearer: “We 
recommend the use of FC ranking plus a non-stringent P cutoff as a baseline practice in order to 
generate more reproducible DEG lists.  The FC criterion enhances reproducibility while the P 
criterion balances sensitivity and specificity.” (revised manuscript) 
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We do NOT conclude that the simple t-tests should not be used for the analysis of microarray 
data.  In fact, we use t-test for the analysis of microarray data in our manuscript in order to 
generate a significance measure for the fold-change of each gene.  We do not think t-test itself 
is wrong in microarray data analysis.  Instead, the problem of the reported lack of 
reproducibility of gene lists stems from the use of t-statistic (P) as the ranking criterion for the 
identification of differentially expressed genes, with or without a FC threshold.   
 
We note further that SAM does not necessarily produce more reproducible lists compared to 
FC, although it may produce more highly specific lists than t-tests.  Our technique of using the 
combination of significance and fold change is not new, but fold change ranking with a 
significance threshold is more specific than simply saying “using volcano plots” without clearly 
identifying the more important factor, FC.  The ramifications of this technique are ideally suited 
for reproducibility, which is a new concept.   
 
We agree with the reviewer that, in a variety of contexts, DEGs may be identified using 
numerous different statistical tests including rank tests (e.g., Wilcoxon rank-sum test) and 
shrunken t-tests (e.g., SAM).  These methods are typically promoted in terms of improved 
sensitivity (power) while retaining nominal rates of specificity.  Reproducibility is a fundamental 
requirement in scientific experiments and clinical contexts, but is seldom emphasized in 
microarray literature.  However, our work was not intended to serve as a comprehensive 
performance survey of different statistical procedures.  Although valuable, such a survey is out 
of the scope of this work and would be a different large study. 
 
It should also be emphasized that despite the publication of numerous new statistical methods for 
the identification of DEGs, the simple t-test is arguably still the most widely used approach 
by the general microarray community. 
 
Actions taken:  
 
(1) A few extra sentences justifying our choice of using simple t-test have been added to the 
Abstract, Introduction, and Conclusion.   
 
(2) In a sincere attempt to satisfy the reviewer, we created a POG graph (Figure 5 of the revised 
manuscript) by including SAM and Wilcoxon rank-sum test, which was requested by another 
reviewer, using AFX site-site comparison as an example.  As can be easily seen from Figure 5, 
the SAM POG (pink line), although greatly improved over that of simple t-test (purple line), 
approached, but did not exceed, the level of POG based on FC ranking (green line).  In addition, 
to address the reviewer’s concerns on the use of “artificial data set”, we created a POG graph 
(Figure R3-A) from a real rat toxicogenomics data set (Guo et al.) using FC and SAM ranking 
for identifying differentially expressed genes.  Compared to fold change ranking, SAM 
reduced inter-site concordance in this case, a finding that is consistent with what was 
observed from the MAQC data sets. 
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Figure R3-A: SAM reduces inter-site concordance in a real toxicogenomics data set. 

 
(3) Scatterplots of SAM d values and FCs (Figure R3-B) using AFX site-site comparison were 
created as an example.  Again, inter-site consistency of SAM d values did not out-perform that of 
log2 FC (Table R3).  In summary, SAM did not appear to make microarray data (in terms of 
DEG lists or SAM d values) more reproducible across laboratories.  Interestingly, in one case 
(the AFX data) the stabilization factor used in the denominator of SAM became large.  One 
consequence of this is that the denominators in the SAM test statistic become much more 
homogeneous for all genes.  Therefore, ranking order by SAM approaches that by FC.  In fact 
the mathematical analysis of the statistical properties of the non-central t-statistic in the Inset 
Box in the manuscript should provide the reader with valuable insight into why the SAM statistic 
and other shrunken t-statistics can provide improved reproducibility of DEG lists. 
 

Table R3: Correlation matrix of log2 FC and SAM d in inter-site comparison. 
 
  log2 FC (site 1) log2 FC (site 2) log2 FC (site 3) SAM_d (site 1) SAM_d (site 2) SAM_d (site 3) 
log2 FC (site 1) 1.0000  0.9895  0.9934  0.9989  0.9885  0.9931 
log2 FC (site 2) 0.9895  1.0000  0.9944  0.9889  0.9987  0.9947 
log2 FC (site 3) 0.9934  0.9944  1.0000  0.9919  0.9925  0.9993 
SAM_d (site 1) 0.9989  0.9889  0.9919  1.0000  0.9890  0.9924 
SAM_d (site 2) 0.9885  0.9987  0.9925  0.9890  1.0000  0.9938 
SAM_d (site 3) 0.9931  0.9947  0.9993  0.9924  0.9938  1.0000 
 
 

Response to reviewer #3’s comments: 7/10 

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

07
.3

06
.1

 : 
P

os
te

d 
29

 J
un

 2
00

7



Shi LM, Jones WD et al., Point-by-Point Response [MAQC MS-6] 

 
Figure R3-B: Scatter plots of SAM d values and log2FC in inter-site comparison.  

Affymetrix data on samples A and B from three test sites for the “12,091” commonly mapped 
genes were used.  No flagged (“Absent”) genes were excluded in the analysis. 

 
4. So in the end, the manuscript creates a problem that has largely been resolved and 

arrives at solutions that have been well known for some time. 
 

Response:  
 
We feel that this problem of reproducibility is yet to be properly understood and recognized 
related to microarray analysis.  While the use of FC and significance combined is not new, which 
we acknowledge, our recommendations for its particular use of FC ranking with a non-stringent 
significance threshold related to performance with respect to reproducibility are new and are 
important to the microarray field.  It represents a dramatic change to the common practice of 
“statistical” analysis of microarray data where statistical significance measures (e.g., t-statistic) 
have been widely used for ranking and selecting differentially expressed genes.   
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Begin of original comments: 
 
Reviewer #3(Remarks to the Author):  
 
Shi and colleagues present  
 
The manuscript begins with a brief and somewhat self-serving 
literature review pointing out problems observed in trying to find 
concordance across microarray studies but completely ignoring more 
recent publications, including three independent publications that 
appeared in Nature Methods in 2005 (Bammler et al. 2005; Irizarry et 
al. 2005; Larkin et al. 2005), a paper that appeared in BMC Genomics 
earlier this year (Wang et al. 2006), as well as many others (e.g., 
Carter et al. 2005; Ulrich et al. 2004), that reached very different 
conclusions regarding the quality of microarray experimental results 
and helped to define methods to assure concordance between the results.  
 
The manuscript then presents, in an almost unreadable format populated 
with sentences that appear to composed almost entirely of acronyms, an 
analysis of artificial datasets constructed for the MAQC project and 
simulations to demonstrate that t-tests are not the best method for 
the analysis of microarray data. There are a number of problems with 
this analysis, not the least of which is the fact that simulations 
require a thorough understanding of the nature of the data, the 
relationships between the entities being simulated, and the nature of 
the structure of the variance in the observations. None of this is 
really known for microarrays and gene expression profiles and so a 
simulation can be constructed based on assumptions of what one wants 
to find that will easily verify the underlying assumptions  The MAQC 
dataset itself is also extremely problematic since it does not 
represent "real" gene expression data and consequently does not 
represent the full spectrum of inter-related patterns that appear in 
microarray profiles.  
 
Nevertheless, the manuscript reaches a conclusion that anyone working 
in the field has known for years - that simple t-tests are not the 
best method for the analysis of microarray data, particularly for 
small sample sizes and particularly for genes expressed at low levels 
where the signal approaches the noise. This, indeed, was the 
justification for the development of SAM, an algorithm that uses 
pooled variance for genes binned by expression level to correct for 
this effect - and not surprisingly the authors find that SAM is 
superior to a simple t-test. The other approach the authors find to be 
superior to the t-test? Genes selected based on volcano plots. Again, 
this is not something new but a technique that has been used for quite 
some time.  
 
So in the end, the manuscript creates a problem that has largely been 
resolved and arrives at solutions that have been well known for some 
time.  
 
Bammler, T., R.P. Beyer, S. Bhattacharya, G.A. Boorman, A. Boyles, B.U. 
Bradford, R.E. Bumgarner, P.R. Bushel, K. Chaturvedi, D. Choi, M.L. 
Cunningham, S. Deng, H.K. Dressman, R.D. Fannin, F.M. Farin, J.H. 
Freedman, R.C. Fry, A. Harper, M.C. Humble, P. Hurban, T.J. Kavanagh, 
W.K. Kaufmann, K.F. Kerr, L. Jing, J.A. Lapidus, M.R. Lasarev, J. Li, 
Y.J. Li, E.K. Lobenhofer, X. Lu, R.L. Malek, S. Milton, S.R. Nagalla, 
P. O'Malley J, V.S. Palmer, P. Pattee, R.S. Paules, C.M. Perou, K. 
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Phillips, L.X. Qin, Y. Qiu, S.D. Quigley, M. Rodland, I. Rusyn, L.D. 
Samson, D.A. Schwartz, Y. Shi, J.L. Shin, S.O. Sieber, S. Slifer, M.C. 
Speer, P.S. Spencer, D.I. Sproles, J.A. Swenberg, W.A. Suk, R.C. 
Sullivan, R. Tian, R.W. Tennant, S.A. Todd, C.J. Tucker, B. Van Houten, 
B.K. Weis, S. Xuan, and H. Zarbl. 2005. Standardizing global gene 
expression analysis between laboratories and across platforms. Nat 
Methods 2: 351-356.  
 
Carter, S.L., A.C. Eklund, B.H. Mecham, I.S. Kohane, and Z. Szallasi. 
2005. Redefinition of Affymetrix probe sets by sequence overlap with 
cDNA microarray probes reduces cross-platform inconsistencies in 
cancer-associated gene expression measurements. BMC Bioinformatics 6: 
107.  
 
Irizarry, R.A., D. Warren, F. Spencer, I.F. Kim, S. Biswal, B.C. Frank, 
E. Gabrielson, J.G. Garcia, J. Geoghegan, G. Germino, C. Griffin, S.C. 
Hilmer, E. Hoffman, A.E. Jedlicka, E. Kawasaki, F. Martinez-Murillo, L. 
Morsberger, H. Lee, D. Petersen, J. Quackenbush, A. Scott, M. Wilson, 
Y. Yang, S.Q. Ye, and W. Yu. 2005. Multiple-laboratory comparison of 
microarray platforms. Nat Methods 2: 345-350.  
 
Larkin, J.E., B.C. Frank, H. Gavras, R. Sultana, and J. Quackenbush. 
2005. Independence and reproducibility across microarray platforms. 
Nat Methods 2: 337-344.  
 
Ulrich, R.G., J.C. Rockett, G.G. Gibson, and S.D. Pettit. 2004. 
Overview of an interlaboratory collaboration on evaluating the effects 
of model hepatotoxicants on hepatic gene expression. Environ Health 
Perspect 112: 423-427.  
 
Wang, Y., C. Barbacioru, F. Hyland, W. Xiao, K.L. Hunkapiller, J. 
Blake, F. Chan, C. Gonzalez, L. Zhang, and R.R. Samaha. 2006. Large 
scale real-time PCR validation on gene expression measurements from 
two commercial long-oligonucleotide microarrays. BMC Genomics 7: 59.  
 
 

End of original comments 
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