41 research outputs found

    Large- and small-size advantages in sneaking behaviour in the dusky frillgoby Bathygobius fuscus

    Get PDF
    Sneaking tactic, a male alternative reproductive tactic involving sperm competition, is generally adopted by small individuals because of its inconspicuousness. However, large size has an advantage when competition occurs between sneakers for fertilization of eggs. Here, we suggest that both large- and small-size advantages of sneaker males are present within the same species. Large sneaker males of the dusky frillgoby Bathygobius fuscus showed a high success rate in intruding into spawning nests because of their advantage in competition among sneaker males in keeping a suitable position to sneak, whereas small sneakers had few chances to sneak. However, small sneaker males were able to stay in the nests longer than large sneaker males when they succeeded in sneak intrusion. This suggests the possibility of an increase in their paternity. The findings of these sizespecific behavioural advantages may be important in considering the evolution of size-related reproductive traits

    The Constrained Maximal Expression Level Owing to Haploidy Shapes Gene Content on the Mammalian X Chromosome.

    Get PDF
    X chromosomes are unusual in many regards, not least of which is their nonrandom gene content. The causes of this bias are commonly discussed in the context of sexual antagonism and the avoidance of activity in the male germline. Here, we examine the notion that, at least in some taxa, functionally biased gene content may more profoundly be shaped by limits imposed on gene expression owing to haploid expression of the X chromosome. Notably, if the X, as in primates, is transcribed at rates comparable to the ancestral rate (per promoter) prior to the X chromosome formation, then the X is not a tolerable environment for genes with very high maximal net levels of expression, owing to transcriptional traffic jams. We test this hypothesis using The Encyclopedia of DNA Elements (ENCODE) and data from the Functional Annotation of the Mammalian Genome (FANTOM5) project. As predicted, the maximal expression of human X-linked genes is much lower than that of genes on autosomes: on average, maximal expression is three times lower on the X chromosome than on autosomes. Similarly, autosome-to-X retroposition events are associated with lower maximal expression of retrogenes on the X than seen for X-to-autosome retrogenes on autosomes. Also as expected, X-linked genes have a lesser degree of increase in gene expression than autosomal ones (compared to the human/Chimpanzee common ancestor) if highly expressed, but not if lowly expressed. The traffic jam model also explains the known lower breadth of expression for genes on the X (and the Z of birds), as genes with broad expression are, on average, those with high maximal expression. As then further predicted, highly expressed tissue-specific genes are also rare on the X and broadly expressed genes on the X tend to be lowly expressed, both indicating that the trend is shaped by the maximal expression level not the breadth of expression per se. Importantly, a limit to the maximal expression level explains biased tissue of expression profiles of X-linked genes. Tissues whose tissue-specific genes are very highly expressed (e.g., secretory tissues, tissues abundant in structural proteins) are also tissues in which gene expression is relatively rare on the X chromosome. These trends cannot be fully accounted for in terms of alternative models of biased expression. In conclusion, the notion that it is hard for genes on the Therian X to be highly expressed, owing to transcriptional traffic jams, provides a simple yet robustly supported rationale of many peculiar features of X's gene content, gene expression, and evolution

    Increasing tendency of urine protein is a risk factor for rapid eGFR decline in patients with CKD: A machine learning-based prediction model by using a big database.

    No full text
    Artificial intelligence is increasingly being adopted in medical fields to predict various outcomes. In particular, chronic kidney disease (CKD) is problematic because it often progresses to end-stage kidney disease. However, the trajectories of kidney function depend on individual patients. In this study, we propose a machine learning-based model to predict the rapid decline in kidney function among CKD patients by using a big hospital database constructed from the information of 118,584 patients derived from the electronic medical records system. The database included the estimated glomerular filtration rate (eGFR) of each patient, recorded at least twice over a period of 90 days. The data of 19,894 patients (16.8%) were observed to satisfy the CKD criteria. We characterized the rapid decline of kidney function by a decline of 30% or more in the eGFR within a period of two years and classified the available patients into two groups-those exhibiting rapid eGFR decline and those exhibiting non-rapid eGFR decline. Following this, we constructed predictive models based on two machine learning algorithms. Longitudinal laboratory data including urine protein, blood pressure, and hemoglobin were used as covariates. We used longitudinal statistics with a baseline corresponding to 90-, 180-, and 360-day windows prior to the baseline point. The longitudinal statistics included the exponentially smoothed average (ESA), where the weight was defined to be 0.9*(t/b), where t denotes the number of days prior to the baseline point and b denotes the decay parameter. In this study, b was taken to be 7 (7-day ESA). We used logistic regression (LR) and random forest (RF) algorithms based on Python code with scikit-learn library (https://scikit-learn.org/) for model creation. The areas under the curve for LR and RF were 0.71 and 0.73, respectively. The 7-day ESA of urine protein ranked within the first two places in terms of importance according to both models. Further, other features related to urine protein were likely to rank higher than the rest. The LR and RF models revealed that the degree of urine protein, especially if it exhibited an increasing tendency, served as a prominent risk factor associated with rapid eGFR decline

    Data Descriptor : FANTOM5 CAGE profiles of human and mouse samples

    Get PDF
    In the FANTOM5 project, transcription initiation events across the human and mouse genomes were mapped at a single base-pair resolution and their frequencies were monitored by CAGE (Cap Analysis of Gene Expression) coupled with single-molecule sequencing. Approximately three thousands of samples, consisting of a variety of primary cells, tissues, cell lines, and time series samples during cell activation and development, were subjected to a uniform pipeline of CAGE data production. The analysis pipeline started by measuring RNA extracts to assess their quality, and continued to CAGE library production by using a robotic or a manual workflow, single molecule sequencing, and computational processing to generate frequencies of transcription initiation. Resulting data represents the consequence of transcriptional regulation in each analyzed state of mammalian cells. Non-overlapping peaks over the CAGE profiles, approximately 200,000 and 150,000 peaks for the human and mouse genomes, were identified and annotated to provide precise location of known promoters as well as novel ones, and to quantify their activities.Peer reviewe

    Collision detection on transmission lines with optical interferometer

    No full text
    V diplomski nalogi skušamo ugotoviti, v kolikšni meri je možno zaznavati in klasificirati trke na jeklenicah daljnovodov z optičnim interferometrom. Na začetku predstavimo osnovne pojme interferometrije in opišemo uporabljen optični interferometer. V jedru diplomske naloge natančneje opišemo eksperimentalni protokol in obdelavo signalov. Nadaljujemo z implementacijo algoritmov za segmentacijo in klasifikacijo zajetih signalov ter predstavimo dobljene rezultate. Segmentacijo izvedemo v domeni števila prehodov signala skozi ničlo, za klasifikacijo pa uporabimo večplastno nevronsko mrežo z algoritmom vzvratnega učenja. Rezultati študije nakazujejo, da sta implementirani segmentacija in klasifikacija uspešni v 77 % izvedenih trkov različnih predmetov.We analyse feasibility of collision detection on transmission lines with optical interferometer. We first provide a brief introduction into interferometry, along with a description of the optical interferometer used for measurements in this study. Afterwards, we describe the conducted experimental protocol and signal processing methodology. The focus is on implementation of algorithms for signal segmentation and collision classification. We used zero-crossing algorithm to transform signals into segmentation domain. Classification of collisions is done with a multilayer neural network trained by the backpropagation algorithm. The results demonstrate an average success rate of 77% for segmentation and classification of collision with five different objects
    corecore