43 research outputs found

    Computational self-testing for entangled magic states

    Get PDF
    In the seminal paper [Metger and Vidick, Quantum ’21], they proposed a computational self-testing protocol for Bell states in a single quantum device. Their protocol relies on the fact that the target states are stabilizer states, and hence it is highly non-trivial to reveal whether the other class of quantum states, non-stabilizer states, can be self-tested within their framework. Among non-stabilizer states, magic states are indispensable resources for universal quantum computation. In this letter, we show that a magic state for the CCZ gate can be self-tested while that for the T gate cannot. Our result is applicable to a proof of quantumness, where we can classically verify whether a quantum device generates a quantum state having non zero magic

    Anti-SARS-CoV-2 inactivated vaccine in patients with ANCA-associated vasculitis: Immunogenicity, safety, antibody decay and the booster dose

    Get PDF
    Objective: To evaluate inactivated CoronaVac prime vaccination, antibody decay, booster dose, and safety in ANCA-Associated Vasculitis (AAV) patients. Methods: Fifty-three AAV patients and 106 Controls (CG) received CoronaVac on days: D0 (first dose), D28(second dose), and D210 (booster dose, 32 AAV: 32 CG). The primary outcome was immunogenicity after the second vaccine dose (day 69) assessed by Seroconversion Rates (SC) of anti-SARS-CoV-2 S1/S2 IgG and Neutralizing Antibodies (NAb). Secondary outcomes were safety, immunogenicity (D28/D240), 6-months antibody decay (D210) and the booster dose response (D240). Results: At D69 SC (65.1% vs. 96.8%, p = 0.0001), GMT (21.3 UA/mL vs. 67.7 UA/mL, p < 0.001) and NAb- positivity (53.7% vs. 80.6%, p = 0.001) were moderate but lower in naïve-AAV patients than CG. Patients without SC used more often IS (93.3% vs. 53.3%, p = 0.015), mycophenolate mofetil (20% vs. 0%, p = 0.037) and prednisone (60.0% vs. 28.6%, p = 0.057) than seroconverted. NAb negativity in AAV patients was associated with prednisone treatment (57.9% vs. 18.2%, p = 0.015) and IS (84.2% vs. 55.0%, p = 0.046). Logistic regression analysis models showed that only prednisone was associated with lower seroconversion (OR = 0.2, 0,95% CI 0.05‒0.86, p = 0.030) and with lower NAb positivity (OR = 0.2, 0,95% CI 0.05‒0.88, p = 0.034). After six months (D69‒D210) a decrease in IgG positivity occurred in 32 AAV patients (15.7%, p = 0.074) and 32 CG (18.7%, p = 0.041). For the NAb positivity, the 6-month decrease was not significant (p = 0.114) whereas a major reduction occurred for CG (p < 0.001). A booster dose (D240) resulted in an increment in IgG-positivity (21.9%, p = 0.023) and NAb-positivity (34.4%, p = 0.006) in AAV patients. No moderate/severe adverse events attributable to the vaccine were observed. Conclusion: This study provides novel data on the excellent safety and moderate immunogenicity of CoronaVac in AAV patients. A six-month mild antibody waning was observed with a good response to the booster dose, although levels remained lower than CG (CoronavRheum-NCT04754698)

    Spinor Bose-Einstein condensates

    Full text link
    An overview on the physics of spinor and dipolar Bose-Einstein condensates (BECs) is given. Mean-field ground states, Bogoliubov spectra, and many-body ground and excited states of spinor BECs are discussed. Properties of spin-polarized dipolar BECs and those of spinor-dipolar BECs are reviewed. Some of the unique features of the vortices in spinor BECs such as fractional vortices and non-Abelian vortices are delineated. The symmetry of the order parameter is classified using group theory, and various topological excitations are investigated based on homotopy theory. Some of the more recent developments in a spinor BEC are discussed.Comment: To appear in Physics Reports. The PDF file with high resolution figures is available from the following website: http://cat.phys.s.u-tokyo.ac.jp/publication/review_of_spinorBEC.pd

    Dietary Intake of World Record Holders in Oldest Master Athletics in Japan

    No full text

    Chemistry of Complex Organic Molecules in the V883 Ori Disk Revealed by ALMA Band 3 Observations

    No full text
    Complex organic molecules (COMs) in protoplanetary disks are key to understanding the origin of volatiles in comets in our solar system, yet the chemistry of COMs in protoplanetary disks remains poorly understood. Here, we present Atacama Large Millimeter/submillimeter Array Band 3 observations of the disk around the young outbursting star V883 Ori, where the COMs sublimate from ices and are thus observable thanks to the warm condition of the disk. We have robustly identified ten oxygen-bearing COMs including ^13 C isotopologues in the disk-integrated spectra. The radial distributions of the COM emission, revealed by the detailed analyses of the line profiles, show the inner emission cavity, similar to the previous observations in Band 6 and Band 7. We found that the COMs abundance ratios with respect to methanol are significantly higher than those in the warm protostellar envelopes of IRAS 16293-2422 and similar to the ratios in the solar system comet 67P/Churyumov-Gerasimenko, suggesting the efficient (re)formation of COMs in protoplanetary disks. We also constrained the ^12 C/ ^13 C and D/H ratios of COMs in protoplanetary disks for the first time. The ^12 C/ ^13 C ratios of acetaldehyde, methyl formate, and dimethyl ether are consistently lower (∼20–30) than the canonical ratio in the interstellar medium (∼69), indicating the efficient ^13 C-fractionation of CO. The D/H ratios of methyl formate are slightly lower than the values in IRAS 16293-2422, possibly pointing to the destruction and reformation of COMs in disks. We also discuss the implications for nitrogen and sulfur chemistry in protoplanetary disks

    Sacrificial Anion Reduction Mechanism for Electrochemical Stability Improvement in Highly Concentrated Li-Salt Electrolyte

    No full text
    Li-salt concentration has been recently proposed as an important control parameter of reduction stability of electrolytes in lithium-ion battery (LIB). Here we theoretically investigated low (LC) and high (HC) concentration systems of LiN­(SO<sub>2</sub>CF<sub>3</sub>)<sub>2</sub> (Li-TFSA) salt in acetonitrile (AN) solution, to elucidate the mechanism of improving the low reduction stability of AN at the HC condition, by density functional theory based molecular dynamics (DFT-MD) sampling of the solvation character with extra electron(s). We demonstrated that TFSA anions sacrificially accept the reductive electron at the HC condition, which is ascribed to formation of specific network structure and the resulting shift of electron affinity of the anions. We also found that, even in the LC condition, TFSA eventually decomposes with one electron reduction. This sacrificial anion reduction hinders two electron reductive decomposition of AN, leading to improved electrochemical stability. The mechanism may give a guiding principle for the design of better LIB electrolytes
    corecore