154 research outputs found

    RESEARCH ON THE MOTION RESPONSE OF AQUACULTURE SHIP AND TANK SLOSHING UNDER ROLLING RESONANCE

    Get PDF
    The double-row and double-chamfered aquaculture tank is a special tank structure of the aquaculture ship. The tank sloshing of this structure is coupled with the hull motion, which has an important impact on the safety of the hull motion. In the present study, research on the tank sloshing and hull motion response of aquaculture ships was conducted based on the model seakeeping and tank sloshing tests in regular waves. The test results were compared with the numerical simulation results of solid loading without sloshing. The results showed that the numerical simulation of the pitch motion was consistent with the amplitude-frequency response curve of the experimental results. Under certain transverse wave conditions, a large discrepancy existed between the amplitude-frequency response curve of the heave motion by the numerical simulation and the test results, and the roll motion differed most from the experimental result. Severe roll resonance occurred when the wave length-ship length ratio was 0.6. The roll motion amplitude was increased by 183.2%. Therefore, compared with aquaculture ships without sloshing, the sloshing of the tank has little effect on the pitch but has a great impact on the roll and heave motions, with the most significant effect on the roll motion

    Microstructural Origin of the High-Energy Storage Performance in Epitaxial Lead-Free Ba(Zr 0.2 Ti 0.8 )O 3 Thick Films

    Full text link
    In our previous work, epitaxial Ba(Zr 0.2 Ti 0.8 )O 3 thick films (~1–2 μ m) showed an excellent energy storage performance with a large recyclable energy density (~58 J/cc) and a high energy efficiency (~92%), which was attributed to a nanoscale entangled heterophase polydomain structure. Here, we propose a detailed analysis of the structure–property relationship in these film materials, using an annealing process to illustrate the effect of nanodomain entanglement on the energy storage performance. It is revealed that an annealing-induced stress relaxation led to the segregation of the nanodomains (via detailed XRD analyses), and a degraded energy storage performance (via polarization-electric field analysis). These results confirm that a nanophase entanglement is an origin of the high-energy storage performance in the Ba(Zr 0.2 Ti 0.8 )O 3 thickfilms

    Investigation of Salt Tolerance Mechanisms across a Root Developmental Gradient in Almond Rootstocks

    Get PDF
    The intensive use of groundwater in agriculture under the current climate conditions leads to acceleration of soil salinization. Given that almond is a salt-sensitive crop, selection of salt-tolerant rootstocks can help maintain productivity under salinity stress. Selection for tolerant rootstocks at an early growth stage can reduce the investment of time and resources. However, salinity-sensitive markers and salinity tolerance mechanisms of almond species to assist this selection process are largely unknown. We established a microscopy-based approach to investigate mechanisms of stress tolerance in and identified cellular, root anatomical, and molecular traits associated with rootstocks exhibiting salt tolerance. We characterized three almond rootstocks: Empyrean-1 (E1), Controller-5 (C5), and Krymsk-86 (K86). Based on cellular and molecular evidence, our results show that E1 has a higher capacity for salt exclusion by a combination of upregulating ion transporter expression and enhanced deposition of suberin and lignin in the root apoplastic barriers, exodermis, and endodermis, in response to salt stress. Expression analyses revealed differential regulation of cation transporters, stress signaling, and biopolymer synthesis genes in the different rootstocks. This foundational study reveals the mechanisms of salinity tolerance in almond rootstocks from cellular and structural perspectives across a root developmental gradient and provides insights for future screens targeting stress response

    Potential of Core-Collapse Supernova Neutrino Detection at JUNO

    Get PDF
    JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve

    Detection of the Diffuse Supernova Neutrino Background with JUNO

    Get PDF
    As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO

    Diving below the spin-down limit:constraints on gravitational waves from the energetic young pulsar PSR J0537-6910

    Get PDF
    We present a search for continuous gravitational-wave signals from the young, energetic X-ray pulsar PSR J0537-6910 using data from the second and third observing runs of LIGO and Virgo. The search is enabled by a contemporaneous timing ephemeris obtained using NICER data. The NICER ephemeris has also been extended through 2020 October and includes three new glitches. PSR J0537-6910 has the largest spin-down luminosity of any pulsar and is highly active with regards to glitches. Analyses of its long-term and inter-glitch braking indices provided intriguing evidence that its spin-down energy budget may include gravitational-wave emission from a time-varying mass quadrupole moment. Its 62 Hz rotation frequency also puts its possible gravitational-wave emission in the most sensitive band of LIGO/Virgo detectors. Motivated by these considerations, we search for gravitational-wave emission at both once and twice the rotation frequency. We find no signal, however, and report our upper limits. Assuming a rigidly rotating triaxial star, our constraints reach below the gravitational-wave spin-down limit for this star for the first time by more than a factor of two and limit gravitational waves from the l = m = 2 mode to account for less than 14% of the spin-down energy budget. The fiducial equatorial ellipticity is limited to less than about 3 x 10⁻⁵, which is the third best constraint for any young pulsar

    Search for anisotropic gravitational-wave backgrounds using data from Advanced LIGO and Advanced Virgo's first three observing runs

    Get PDF
    We report results from searches for anisotropic stochastic gravitational-wave backgrounds using data from the first three observing runs of the Advanced LIGO and Advanced Virgo detectors. For the first time, we include Virgo data in our analysis and run our search with a new efficient pipeline called {\tt PyStoch} on data folded over one sidereal day. We use gravitational-wave radiometry (broadband and narrow band) to produce sky maps of stochastic gravitational-wave backgrounds and to search for gravitational waves from point sources. A spherical harmonic decomposition method is employed to look for gravitational-wave emission from spatially-extended sources. Neither technique found evidence of gravitational-wave signals. Hence we derive 95\% confidence-level upper limit sky maps on the gravitational-wave energy flux from broadband point sources, ranging from Fα,Θ<(0.0137.6)×108ergcm2s1Hz1,F_{\alpha, \Theta} < {\rm (0.013 - 7.6)} \times 10^{-8} {\rm erg \, cm^{-2} \, s^{-1} \, Hz^{-1}}, and on the (normalized) gravitational-wave energy density spectrum from extended sources, ranging from Ωα,Θ<(0.579.3)×109sr1\Omega_{\alpha, \Theta} < {\rm (0.57 - 9.3)} \times 10^{-9} \, {\rm sr^{-1}}, depending on direction (Θ\Theta) and spectral index (α\alpha). These limits improve upon previous limits by factors of 2.93.52.9 - 3.5. We also set 95\% confidence level upper limits on the frequency-dependent strain amplitudes of quasimonochromatic gravitational waves coming from three interesting targets, Scorpius X-1, SN 1987A and the Galactic Center, with best upper limits range from h0<(1.72.1)×1025,h_0 < {\rm (1.7-2.1)} \times 10^{-25}, a factor of 2.0\geq 2.0 improvement compared to previous stochastic radiometer searches.Comment: 23 Pages, 9 Figure
    corecore