31 research outputs found

    Magnetic field induced transition in a wide parabolic well superimposed with superlattice

    Full text link
    We study a AlxGax1AsAl_{x}Ga_{x-1}As parabolic quantum wells (PQW) with GaAs/AlxGax1AsGaAs/Al_{x}Ga_{x-1}As square superlattice. The magnetotransport in PQW with intentionally disordered short-period superlattice reveals a surprising transition from electrons distribution over whole parabolic well to independent-layer states with unequal density. The transition occurs in the perpendicular magnetic field at Landau filling factor ν3\nu\approx3 and is signaled by the appearance of the strong and developing fractional quantum Hall (FQH) states and by the enhanced slope of the Hall resistance. We attribute the transition to the possible electron localization in the x-y plane inside the lateral wells, and formation of the FQH states in the central well of the superlattice, driven by electron-electron interaction.Comment: 5 pages, 4 figure

    Linear and Second-order Optical Response of the III-V Mono-layer Superlattices

    Full text link
    We report the first fully self-consistent calculations of the nonlinear optical properties of superlattices. The materials investigated are mono-layer superlattices with GaP grown on the the top of InP, AlP and GaAs (110) substrates. We use the full-potential linearized augmented plane wave method within the generalized gradient approximation to obtain the frequency dependent dielectric tensor and the second-harmonic-generation susceptibility. The effect of lattice relaxations on the linear optical properties are studied. Our calculations show that the major anisotropy in the optical properties is the result of strain in GaP. This anisotropy is maximum for the superlattice with maximum lattice mismatch between the constituent materials. In order to differentiate the superlattice features from the bulk-like transitions an improvement over the existing effective medium model is proposed. The superlattice features are found to be more pronounced for the second-order than the linear optical response indicating the need for full supercell calculations in determining the correct second-order response.Comment: 9 pages, 4 figures, submitted to Phy. Rev.

    Semiconductor Superlattices: A model system for nonlinear transport

    Full text link
    Electric transport in semiconductor superlattices is dominated by pronounced negative differential conductivity. In this report the standard transport theories for superlattices, i.e. miniband conduction, Wannier-Stark-hopping, and sequential tunneling, are reviewed in detail. Their relation to each other is clarified by a comparison with a quantum transport model based on nonequilibrium Green functions. It is demonstrated how the occurrence of negative differential conductivity causes inhomogeneous electric field distributions, yielding either a characteristic sawtooth shape of the current-voltage characteristic or self-sustained current oscillations. An additional ac-voltage in the THz range is included in the theory as well. The results display absolute negative conductance, photon-assisted tunneling, the possibility of gain, and a negative tunneling capacitance.Comment: 121 pages, figures included, to appear in Physics Reports (2001

    High resolution X-Ray diffraction analysis of InGaAs/InP superlattices

    Get PDF
    The interfacial properties of lattice-matched InGaAs/InP superlattice (SL) structures grown by gas source molecular beam epitaxy were investigated by high resolution x-ray diffraction (HRXRD). SLs with various periods were grown to determine the contributions of the interface layers to the structural properties of the SLs. The HRXRD curves exhibited a number of features indicative of interfacial layers, including weak even-order satellite peaks, and a zero-order diffraction peak that shifted toward lower diffraction angles with decreasing SL period. A detailed structural model is proposed to explain these observations, consisting of strained InAsP and InGaAsP monolayers due to the group-V gas switching and atomic exchange at the SL interfaces.Fil: Cornet, D. M.. Mc Master University; CanadáFil: LaPierre, R. R. Mc Master University; CanadáFil: Pusep, Yu A.. Universidade de São Paulo; BrasilFil: Comedi, David Mario. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Física. Laboratorio de Física del Sólido; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentin
    corecore