90 research outputs found

    Interactions of a j=1j=1 boson in the 2(2j+1)2(2j+1) component theory

    Full text link
    The amplitudes for boson-boson and fermion-boson interactions are calculated in the second order of perturbation theory in the Lobachevsky space. An essential ingredient of the used model is the Weinberg's 2(2j+1)2(2j+1) component formalism for describing a particle of spin jj, recently developed substantially. The boson-boson amplitude is then compared with the two-fermion amplitude obtained long ago by Skachkov on the ground of the hamiltonian formulation of quantum field theory on the mass hyperboloid, p02p2=M2p_0^2 -{\bf p}^2=M^2, proposed by Kadyshevsky. The parametrization of the amplitudes by means of the momentum transfer in the Lobachevsky space leads to same spin structures in the expressions of TT matrices for the fermion and the boson cases. However, certain differences are found. Possible physical applications are discussed.Comment: REVTeX 3.0 file. 12pp. Substantially revised version of IFUNAM preprints FT-93-24, FT-93-3

    Fermion-fermion and boson-boson amplitudes: surprising similarities

    Full text link
    Amplitudes for fermion-fermion, boson-boson and fermion-boson interactions are calculated in the second order of perturbation theory in the Lobachevsky space. An essential ingredient of the model is the Weinberg's 2(2j+1)-component formalism for describing a particle of spin j. The boson-boson amplitude is then compared with the two-fermion amplitude obtained long ago by Skachkov on the basis of the Hamiltonian formulation of quantum field theory on the mass hyperboloid, p_0^2 - p^2=M^2, proposed by Kadyshevsky. The parametrization of the amplitudes by means of the momentum transfer in the Lobachevsky space leads to same spin structures in the expressions of T-matrices for the fermion case and the boson case. However, certain differences are found. Possible physical applications are discussed.Comment: 7 pages, no figures, talks given at the 5th International Symposium on "Quantum Theory and Symmetries", July 22-28, 2007, Valladolid, Spain and the 10th Workshop "What comes beyond the Standard Model?", July 17-27, 2007, Bled, Sloveni

    Gauge (non-)invariant Green functions of Dirac fermions coupled to gauge fields

    Full text link
    We develop a unified approach to both infrared and ultraviolet asymptotics of the fermion Green functions in the condensed matter systems that allow for an effective description in the framework of the Quantum Electrodynamics. By applying a path integral representation to the previously suggested form of the physical electron propagator we demonstrate that in the massless case this gauge invariant function features a "stronger-than-a-pole" branch-cut singularity instead of the conjectured Luttinger-like behavior. The obtained results alert one to the possibility that construction of physically relevant amplitudes in the effective gauge theories might prove more complex than previously thought

    Spin physics with antiprotons

    Full text link
    New possibilities arising from the availability at GSI of antiproton beams, possibly polarised, are discussed. The investigation of the nucleon structure can be boosted by accessing in Drell-Yan processes experimental asymmetries related to cross-sections in which the parton distribution functions (PDF) only appear, without any contribution from fragmentation functions; such processes are not affected by the chiral suppression of the transversity function h1(x)h_1(x). Spin asymmetries in hyperon production and Single Spin Asymmetries are discussed as well, together with further items like electric and magnetic nucleonic form factors and open charm production. Counting rates estimations are provided for each physical case. The sketch of a possible experimental apparatus is proposed.Comment: Presented for the proceedings of ASI "Spin and Symmetry", Prague, July 5-10, 2004, to be published in Czech. J. Phys. 55 (2005

    Feasibility studies of the time-like proton electromagnetic form factor measurements with PANDA at FAIR

    Full text link
    The possibility of measuring the proton electromagnetic form factors in the time-like region at FAIR with the \PANDA detector is discussed. Detailed simulations on signal efficiency for the annihilation of pˉ+p\bar p +p into a lepton pair as well as for the most important background channels have been performed. It is shown that precision measurements of the differential cross section of the reaction pˉ+pe++e\bar p +p \to e^++ e^- can be obtained in a wide angular and kinematical range. The individual determination of the moduli of the electric and magnetic proton form factors will be possible up to a value of momentum transfer squared of q214q^2\simeq 14 (GeV/c)2^2. The total pˉ+pe++e\bar p +p\to e^++e^- cross section will be measured up to q228q^2\simeq 28 (GeV/c)2^2. The results obtained from simulated events are compared to the existing data. Sensitivity to the two photons exchange mechanism is also investigated.Comment: 12 pages, 4 tables, 8 figures Revised, added details on simulations, 4 tables, 9 figure

    Technical Design Report for the PANDA Solenoid and Dipole Spectrometer Magnets

    Full text link
    This document is the Technical Design Report covering the two large spectrometer magnets of the PANDA detector set-up. It shows the conceptual design of the magnets and their anticipated performance. It precedes the tender and procurement of the magnets and, hence, is subject to possible modifications arising during this process.Comment: 10 pages, 14MB, accepted by FAIR STI in May 2009, editors: Inti Lehmann (chair), Andrea Bersani, Yuri Lobanov, Jost Luehning, Jerzy Smyrski, Technical Coordiantor: Lars Schmitt, Bernd Lewandowski (deputy), Spokespersons: Ulrich Wiedner, Paola Gianotti (deputy

    Feasibility studies of time-like proton electromagnetic form factors at PANDA at FAIR

    Get PDF
    Simulation results for future measurements of electromagnetic proton form factors at \PANDA (FAIR) within the PandaRoot software framework are reported. The statistical precision with which the proton form factors can be determined is estimated. The signal channel pˉpe+e\bar p p \to e^+ e^- is studied on the basis of two different but consistent procedures. The suppression of the main background channel, i.e.\textit{i.e.} pˉpπ+π\bar p p \to \pi^+ \pi^-, is studied. Furthermore, the background versus signal efficiency, statistical and systematical uncertainties on the extracted proton form factors are evaluated using two different procedures. The results are consistent with those of a previous simulation study using an older, simplified framework. However, a slightly better precision is achieved in the PandaRoot study in a large range of momentum transfer, assuming the nominal beam conditions and detector performance

    Double parton interactions in photon+3 jet events in ppbar collisions sqrt{s}=1.96 TeV

    Get PDF
    We have used a sample of photon+3 jets events collected by the D0 experiment with an integrated luminosity of about 1 fb^-1 to determine the fraction of events with double parton scattering (f_DP) in a single ppbar collision at sqrt{s}=1.96 TeV. The DP fraction and effective cross section (sigma_eff), a process-independent scale parameter related to the parton density inside the nucleon, are measured in three intervals of the second (ordered in pT) jet transverse momentum pT_jet2 within the range 15 < pT_jet2 < 30 GeV. In this range, f_DP varies between 0.23 < f_DP < 0.47, while sigma_eff has the average value sigma_eff_ave = 16.4 +- 0.3(stat) +- 2.3(syst) mb.Comment: 15 pages, 13 figure

    Technical Design Report for the: PANDA Micro Vertex Detector

    Full text link
    This document illustrates the technical layout and the expected performance of the Micro Vertex Detector (MVD) of the PANDA experiment. The MVD will detect charged particles as close as possible to the interaction zone. Design criteria and the optimisation process as well as the technical solutions chosen are discussed and the results of this process are subjected to extensive Monte Carlo physics studies. The route towards realisation of the detector is outlined.Comment: 189 pages, 225 figures, 41 table

    Physics Performance Report for PANDA: Strong Interaction Studies with Antiprotons

    Full text link
    To study fundamental questions of hadron and nuclear physics in interactions of antiprotons with nucleons and nuclei, the universal PANDA detector will be built. Gluonic excitations, the physics of strange and charm quarks and nucleon structure studies will be performed with unprecedented accuracy thereby allowing high-precision tests of the strong interaction. The proposed PANDA detector is a state-of-the art internal target detector at the HESR at FAIR allowing the detection and identification of neutral and charged particles generated within the relevant angular and energy range. This report presents a summary of the physics accessible at PANDA and what performance can be expected.Comment: 216 page
    corecore