2,013 research outputs found

    N-N Interactions in the Extended Chiral SU(3) Quark Model

    Full text link
    The chiral SU(3) quark model is extended to include coupling between vector chiral field and quarks. By using this model, the phase shifts of NN scattering for different partial waves are studied. The results are very similar to those of the chiral SU(3) quark model calculation, in which one gluon exchange (OGE) plays dominate role in the short range part of the quark-quark interactions. Only in the 1S0^1S_0 case, the one channel phase shifts of the extended chiral SU(3) quark model are obviously improved.Comment: 15 pages, 6 figure

    Possible ΔΔ\Delta\Delta dibaryons in the quark cluster model

    Full text link
    In the framework of RGM, the binding energy of one channel ΔΔ(3,0)\Delta\Delta_{(3,0)}(dd^*) and ΔΔ(0,3)\Delta\Delta_{(0,3)} are studied in the chiral SU(3) quark cluster model. It is shown that the binding energies of the systems are a few tens of MeV. The behavior of the chiral field is also investigated by comparing the results with those in the SU(2) and the extended SU(2) chiral quark models. It is found that the symmetry property of the ΔΔ\Delta\Delta system makes the contribution of the relative kinetic energy operator between two clusters attractive. This is very beneficial for forming the bound dibaryon. Meanwhile the chiral-quark field coupling also plays a very important role on binding. The S-wave phase shifts and the corresponding scattering lengths of the systems are also given.Comment: LeTex with 2 ps figure

    Single-Particle Spin-Orbit Strengths of the Nucleon and Hyperons by SU6 Quark-Model

    Full text link
    The quark-model hyperon-nucleon interaction suggests an important antisymmetric spin-orbit component. It is generated from a color analogue of the Fermi-Breit interaction dominating in the one-gluon exchange process between quarks. We discuss the strength S_B of the single-particle spin-orbit potential, following the Scheerbaum's prescription. Using the SU6 quark-model baryon-baryon interaction which was recently developed by the Kyoto-Niigata group, we calculate NN, Lambda N and Sigma N G-matrices in symmetric nuclear matter and apply them to estimate the strength S_B. The ratio of S_B to the nucleon strength S_N =~ -40 MeV*fm^5 is (S_Lambda)/(S_N) =~ 1/5 and (S_Sigma)/(S_N) =~ 1/2 in the Born approximation. The G-matrix calculation of the model FSS modifies S_Lambda to (S_Lambda)/(S_N) =~ 1/12. For S_N and S_Sigma, the effect of the short-range correlation is comparatively weak against meson-exchange potentials with a short-range repulsive core. The significant reduction of the Lambda single-particle potential arises from the combined effect of the antisymmetric LS force, the flavor-symmetry breaking originating from the strange to up-down quark-mass difference, as well as the effect of the short-range correlation. The density dependence of S_B is also examined.Comment: 26 page

    Massive liquid Ar and Xe detectors for direct Dark Matter searches

    Full text link
    A novel experiment for direct searches of the Dark Matter with liquid argon double-phase chamber with a mass of liquid Ar up to several hundred tons is proposed. To suppress the b-, g- and n0- backgrounds, the comparison of scintillation and ionization signals for every event is suggested. The addition in liquid Ar of photosensitive Ge(CH3)4 or C2H4 and suppression of triplet component of scintillation signals ensures the detection of scintillation signals with high efficiency and provides a complete suppression of the electron background. For the detection of photoelectrons and ionization electrons, highly stable and reliable GEM detectors must be used.Comment: 8 pages, 2 figures, 1 tabl

    Squeezed Correlations and Spectra for Mass-Shifted Bosons

    Full text link
    Huge back-to-back correlations are shown to arise for thermal ensembles of bosonic states with medium-modified masses. The effect is experimentally observable in high energy heavy ion collisions.Comment: 4 pages (RevTex) including 2 eps figures via psfig, published versio

    Baryon-baryon interactions in the SU6 quark model and their applications to light nuclear systems

    Get PDF
    Interactions between the octet-baryons (B8) in the spin-flavor SU6 quark model are investigated in a unified coupled-channels framework of the resonating-group method (RGM). The interaction Hamiltonian for quarks consists of the phenomenological confinement potential, the color Fermi-Breit interaction with explicit flavor-symmetry breaking (FSB), and effective-meson exchange potentials of scalar-, pseudoscalar- and vector-meson types. The model parameters are determined to reproduce the properties of the nucleon-nucleon (NN) system and the low-energy cross section data for the hyperon-nucleon (YN) interactions. The NN phase shifts and many observables for the NN and YN interactions are nicely reproduced. Properties of these B8 B8 interactions are analyzed through the G-matrix calculations. The B8 B8 interactions are then applied to some of few-baryon systems and light Lambda-hypernuclei in a three-cluster Faddeev formalism using two-cluster RGM kernels. An application to the three-nucleon system shows that the quark-model NN interaction can give a sufficient triton binding energy with little room for the three-nucleon force. The hypertriton Faddeev calculation indicates that the attraction of the Lambda N interaction in the 1S0 state is only slightly more attractive than that in the 3S1 state. In the application to the alpha alpha Lambda system, the energy spectrum of 9 Lambda Be is well reproduced using the alpha alpha RGM kernel. The very small spin-orbit splitting of the 9 Lambda Be excited states is also discussed. In the Lambda Lambda alpha Faddeev calculation, the NAGARA event for 6 Lambda Lambda He is found to be consistent with the quark-model Lambda Lambda interaction.Comment: 77 pages, 33 figures, review article to be published in Prog. Part. Nucl. Phy

    Elastic Nd scattering at intermediate energies as a tool for probing the short-range deuteron structure

    Full text link
    A calculation of the deuteron polarization observables AydA^d_y, AyyA_{yy}, AxxA_{xx}, AxzA_{xz} and the differential cross-section for elastic nucleon-deuteron scattering at incident deuteron energies 270 and 880 MeV in lab is presented. A comparison of the calculations with two different deuteron wave-functions derived from the Bonn-CD NNNN-potential model and the dressed bag quark model is carried out. A model-independent approach, based on an optical potential framework, is used in which a nucleon-nucleon TT-matrix is assumed to be local and taken on the energy shell, but still depends on the internal nucleon momentum in a deuteron.Comment: 15 pages, 4 figure

    Three geographically separate domestications of Asian rice

    Get PDF
    Domesticated rice (Oryza sativa L.) accompanied the dawn of Asian civilization(1) and has become one of world's staple crops. From archaeological and genetic evidence various contradictory scenarios for the origin of different varieties of cultivated rice have been proposed, the most recent based on a single domestication(2,3). By examining the footprints of selection in the genomes of different cultivated rice types, we show that there were three independent domestications in different parts of Asia. We identify wild populations in southern China and the Yangtze valley as the source of the japonica gene pool, and populations in Indochina and the Brahmaputra valley as the source of the indica gene pool. We reveal a hitherto unrecognized origin for the aus variety in central India or Bangladesh. We also conclude that aromatic rice is a result of a hybridization between japonica and aus, and that the tropical and temperate versions of japonica are later adaptations of one crop. Our conclusions are in accord with archaeological evidence that suggests widespread origins of rice cultivation(1,4). We therefore anticipate that our results will stimulate a more productive collaboration between genetic and archaeological studies of rice domestication, and guide utilization of genetic resources in breeding programmes aimed at crop improvement.European Research Council [339941]info:eu-repo/semantics/publishedVersio

    Milky Way Supermassive Black Hole: Dynamical Feeding from the Circumnuclear Environment

    Full text link
    The supermassive black hole (SMBH), Sgr A*, at the Galactic Center is surrounded by a molecular circumnuclear disk (CND) lying between 1.5-4 pc radii. The irregular and clumpy structures of the CND, suggest dynamical evolution and episodic feeding of gas towards the central SMBH. New sensitive data from the SMA and GBT, reveal several >5-10 pc scale molecular arms, which either directly connect to the CND, or may penetrate inside the CND. The CND appears to be the convergence of the innermost parts of largescale gas streamers, which are responding to the central gravitational potential well. Rather than being a quasi-stationary structure, the CND may be dynamically evolving, incorporating inflow via streamers, and feeding gas towards the center.Comment: 9 pages, 7 figures, accepted to Ap

    Representing spray zone with cross flow as a well-mixed compartment in a high shear granulator

    Get PDF
    The spray zone is an important region to control nucleation of granules in a high shear granulator. In this study, a spray zone with cross flow is quantified as a well-mixed compartment in a high shear granulator. Granulation kinetics is quantitatively derived at both particle-scale and spray zone-scale. Two spatial decay rates, DGSDR (droplet-granule spatial decay rate) ζDG and DPSDR (droplet-primary particle spatial decay rate) ζDP, which are functions of volume fraction and diameter of particulate species within the powder bed, are defined to simplify the deduction. It is concluded that in cross flow, explicit analytical results show that the droplet concentration is subject to exponential decay with depth which produces a numerically infinite depth of spray zone in a real penetration process. In a well-mixed spray zone, the depth of the spray zone is 4/(ζDG + ζDP) and π2/3(ζDG + ζDP) in cuboid and cylinder shape, respectively. The first-order droplet-based collision rates of, nucleation rate B0 and rewetting rate RW0 are uncorrelated with the flow pattern and shape of the spray zone. The second-order droplet-based collision rate, nucleated granule-granule collision rate RGG, is correlated with the mixing pattern. Finally, a real formulation case of a high shear granulation process is used to estimate the size of the spray zone. The results show that the spray zone is a thin layer at the powder bed surface. We present, for the first time, the spray zone as a well-mixed compartment. The granulation kinetics of a well-mixed spray zone could be integrated into a Population Balance Model (PBM), particularly to aid development of a distributed model for product quality prediction
    corecore