The quark-model hyperon-nucleon interaction suggests an important
antisymmetric spin-orbit component. It is generated from a color analogue of
the Fermi-Breit interaction dominating in the one-gluon exchange process
between quarks. We discuss the strength S_B of the single-particle spin-orbit
potential, following the Scheerbaum's prescription. Using the SU6 quark-model
baryon-baryon interaction which was recently developed by the Kyoto-Niigata
group, we calculate NN, Lambda N and Sigma N G-matrices in symmetric nuclear
matter and apply them to estimate the strength S_B. The ratio of S_B to the
nucleon strength S_N =~ -40 MeV*fm^5 is (S_Lambda)/(S_N) =~ 1/5 and
(S_Sigma)/(S_N) =~ 1/2 in the Born approximation. The G-matrix calculation of
the model FSS modifies S_Lambda to (S_Lambda)/(S_N) =~ 1/12. For S_N and
S_Sigma, the effect of the short-range correlation is comparatively weak
against meson-exchange potentials with a short-range repulsive core. The
significant reduction of the Lambda single-particle potential arises from the
combined effect of the antisymmetric LS force, the flavor-symmetry breaking
originating from the strange to up-down quark-mass difference, as well as the
effect of the short-range correlation. The density dependence of S_B is also
examined.Comment: 26 page