53 research outputs found

    GRB 170817A as a jet counterpart to gravitational wave trigger GW 170817

    Get PDF
    Fermi/GBM (Gamma-ray Burst Monitor) and INTEGRAL (the International Gamma-ray Astrophysics Laboratory) reported the detection of the γ-ray counterpart, GRB 170817A, to the LIGO (Light Interferometer Gravitational-wave Observatory)/Virgo gravitational wave detected binary neutron star merger, GW 170817. GRB 170817A is likely to have an internal jet or another origin such as cocoon emission, shock-breakout, or a flare from a viscous disc. In this paper we assume that the γ-ray emission is caused by energy dissipation within a relativistic jet and we model the afterglow synchrotron emission from a reverse and forward shock in the outflow. We show the afterglow for a low-luminosity γ-ray burst (GRB) jet with a high Lorentz factor (Γ); a low-Γ and low-kinetic-energy jet; a low-Γ, high-kinetic-energy jet; structured jets viewed at an inclination within the jet-half-opening angle; and an off-axis ‘typical’ GRB jet. All jet models will produce observable afterglows on various time-scales. The late-time afterglow from  10 to 110 d can be fitted by a Gaussian structured jet viewed at a moderate inclination, however the GRB is not directly reproduced by this model. These jet afterglow models can be used for future gravitational wave detected neutron star merger counterparts with a jet afterglow origin

    Selection effects in the black hole-bulge relation and its evolution

    Full text link
    We present an investigation of sample selection effects that influence the observed black hole - bulge relations and its evolution with redshift. We provide a common framework in which all kinds of selection effects on the BH-bulge relations can be investigated, but our main emphasis is on the consequences of using broad-line AGN and their host galaxies to search for evolution in the BH-bulge relation. We identified relevant sources of bias that were not discussed in the literature so far. A particularly important effect is caused by the fact that the active fraction among SMBHs varies considerably with BH mass, in the sense that high-mass BHs are less likely to be active than lower mass ones. In the connection with intrinsic scatter of the BH-bulge relation this effect implies a bias towards a low BH mass at given bulge property. This effect adds to the bias caused by working with luminosity or flux limited samples that were already discussed by others. A quantitative prediction of these biases requires (i) a realistic model of the sample selection function, and (ii) knowledge of relevant underlying distribution functions. For low-redshift AGN samples we can naturally reproduce the flattening of the relation observed in some studies. When extending our analysis to higher redshift samples we are clearly hampered by limited empirical constraints on the various relevant distribution functions. Using a best-guess approach for these distributions we estimate the expected magnitude of sample selection biases for a number of recent observational attempts to study the BH-bulge evolution. In no case do we find statistically significant evidence for an evolving BH-bulge relation. We suggest a possible practical approach to circumvent several of the most problematic issues connected with AGN selection; this could become a powerful diagnostic in future investigations (abridged).Comment: 20 pages, 20 figures, accepted for publication in A&

    The Development and Assessment on the Social Studies Handbook for Supporting Teacher’s Lesson Planning and Improvement : A Content Structure of Handbook which can be Applied to Pre-service and In-service Teacher Education

    Get PDF
    The purposes of this paper are to develop the draft of handbook for planning, teaching and accessing the class of social studies and evaluate effects of the handbook for teacher training and their professional development. The structure of the first draft was designed based on Kolb’s learning theory. The present results suggested that the usefulness of the contents structure was perceived by (1) pre-service teachers and (2) in-service teachers, and the possibility for application was also recognized by the teacher educator as (3) university professor who teach methods courses, (4) senior supervisor who is in charge of designing the professional development programs and (5) younger supervisor who is in charge of tutoring the novice teacher, but they illustrated their different types of the significances, limits and utilization according to their purposes and as well as their responsibility. The authors implicated the alterative design of the handbook based on Korthagen’s reflective learning model for meeting their purposes and solving the structural problems inherit in the handbook

    Sophisticated Framework between Cell Cycle Arrest and Apoptosis Induction Based on p53 Dynamics

    Get PDF
    The tumor suppressor, p53, regulates several gene expressions that are related to the DNA repair protein, cell cycle arrest and apoptosis induction, which activates the implementation of both cell cycle arrest and induction of apoptosis. However, it is not clear how p53 specifically regulates the implementation of these functions. By applying several well-known kinetic mathematical models, we constructed a novel model that described the influence that DNA damage has on the implementation of both the G2/M phase cell cycle arrest and the intrinsic apoptosis induction via its activation of the p53 synthesis process. The model, which consisted of 32 dependent variables and 115 kinetic parameters, was used to examine interference by DNA damage in the implementation of both G2/M phase cell cycle arrest and intrinsic apoptosis induction. A low DNA damage promoted slightly the synthesis of p53, which showed a sigmoidal behavior with time. In contrast, in the case of a high DNA damage, the p53 showed an oscillation behavior with time. Regardless of the DNA damage level, there were delays in the G2/M progression. The intrinsic apoptosis was only induced in situations where grave DNA damage produced an oscillation of p53. In addition, to wreck the equilibrium between Bcl-2 and Bax the induction of apoptosis required an extreme activation of p53 produced by the oscillation dynamics, and was only implemented after the release of the G2/M phase arrest. When the p53 oscillation is observed, there is possibility that the cell implements the apoptosis induction. Moreover, in contrast to the cell cycle arrest system, the apoptosis induction system is responsible for safeguarding the system that suppresses malignant transformations. The results of these experiments will be useful in the future for elucidating of the dominant factors that determine the cell fate such as normal cell cycles, cell cycle arrest and apoptosis
    • 

    corecore