393 research outputs found

    Revealing the high-density equation of state through binary neutron star mergers

    Full text link
    We present a novel method for revealing the equation of state of high-density neutron star matter through gravitational waves emitted during the postmerger phase of a binary neutron star system. The method relies on a small number of detections of the peak frequency in the postmerger phase for binaries of different (relatively low) masses, in the most likely range of expected detections. From such observations, one can construct the derivative of the peak frequency versus the binary mass, in this mass range. Through a detailed study of binary neutron star mergers for a large sample of equations of state, we show that one can extrapolate the above information to the highest possible mass (the threshold mass for black hole formation in a binary neutron star merger). In turn, this allows for an empirical determination of the maximum mass of cold, nonrotating neutron stars to within 0.1 M_sun, while the corresponding radius is determined to within a few percent. Combining this with the determination of the radius of cold, nonrotating neutron stars of 1.6 M_sun (to within a few percent, as was demonstrated in Bauswein et al., PRD, 86, 063001, 2012), allows for a clear distinction of a particular candidate equation of state among a large set of other candidates. Our method is particularly appealing because it reveals simultaneously the moderate and very high-density parts of the equation of state, enabling the distinction of mass-radius relations even if they are similar at typical neutron star masses. Furthermore, our method also allows to deduce the maximum central energy density and maximum central rest-mass density of cold, nonrotating neutron stars with an accuracy of a few per cent.Comment: 14 pages, 12 figures, 2 tables, accepted for publication in Phys. Rev.

    Exploring properties of high-density matter through remnants of neutron-star mergers

    Full text link
    Remnants of neutron-star mergers are essentially massive, hot, differentially rotating neutron stars, which are initially strongly oscillating. They represent a unique probe for high-density matter because the oscillations are detectable via gravitational-wave measurements and are strongly dependent on the equation of state. The impact of the equation of state is apparent in the frequency of the dominant oscillation mode of the remnant. For a fixed total binary mass a tight relation between the dominant postmerger frequency and the radii of nonrotating neutron stars exists. Inferring observationally the dominant postmerger frequency thus determines neutron star radii with high accuracy of the order of a few hundred meters. By considering symmetric and asymmetric binaries of the same chirp mass, we show that the knowledge of the binary mass ratio is not critical for this kind of radius measurements. We summarize different possibilities to deduce the maximum mass of nonrotating neutron stars. We clarify the nature of the three most prominent features of the postmerger gravitational-wave spectrum and argue that the merger remnant can be considered to be a single, isolated, self-gravitating object that can be described by concepts of asteroseismology. The understanding of the different mechanisms shaping the gravitational-wave signal yields a physically motivated analytic model of the gravitational-wave emission, which may form the basis for template-based gravitational-wave data analysis. We explore the observational consequences of a scenario of two families of compact stars including hadronic and quark stars. We find that this scenario leaves a distinctive imprint on the postmerger gravitational-wave signal. In particular, a strong discontinuity in the dominant postmerger frequency as function of the total mass will be a strong indication for two families of compact stars. (abridged)Comment: 22 pages, 17 figures; accepted for publication in EPJ

    Prompt merger collapse and the maximum mass of neutron stars

    Full text link
    We perform hydrodynamical simulations of neutron-star mergers for a large sample of temperature-dependent, nuclear equations of state, and determine the threshold mass above which the merger remnant promptly collapses to form a black hole. We find that, depending on the equation of state, the threshold mass is larger than the maximum mass of a non-rotating star in isolation by between 30 and 70 per cent. Our simulations also show that the ratio between the threshold mass and maximum mass is tightly correlated with the compactness of the non-rotating maximum-mass configuration. We speculate on how this relation can be used to derive constraints on neutron-star properties from future observations.Comment: 6 pages, 3 figures, accepted for publication in Phys. Rev. Let

    Measuring neutron-star properties via gravitational waves from binary mergers

    Full text link
    We demonstrate by a large set of merger simulations for symmetric binary neutron stars (NSs) that there is a tight correlation between the frequency peak of the postmerger gravitational-wave (GW) emission and the physical properties of the nuclear equation of state (EoS), e.g. expressed by the radius of the maximum-mass Tolman-Oppenheimer-Volkhoff configuration. Therefore, a single measurement of the peak frequency of the postmerger GW signal will constrain the NS EoS significantly. For plausible optimistic merger-rate estimates a corresponding detection with Advanced LIGO is likely to happen within an operation time of roughly a year.Comment: 5 pages, 4 figures, accepted by Phys. Rev. Lett., revised version including referee comment

    Nucleosynthesis constraints on the neutron star-black hole merger rate

    Full text link
    We derive constraints on the time-averaged event rate of neutron star-black hole (NS-BH) mergers by using estimates of the population-integrated production of heavy rapid neutron-capture (r-process) elements with nuclear mass numbers A > 140 by such events in comparison to the Galactic repository of these chemical species. Our estimates are based on relativistic hydrodynamical simulations convolved with theoretical predictions of the binary population. This allows us to determine a strict upper limit of the average NS-BH merger rate of ~6*10^-5 per year. We quantify the uncertainties of this estimate to be within factors of a few mostly because of the unknown BH spin distribution of such systems, the uncertain equation of state of NS matter, and possible errors in the Galactic content of r-process material. Our approach implies a correlation between the merger rates of NS-BH binaries and of double NS systems. Predictions of the detection rate of gravitational-wave signals from such compact-object binaries by Advanced LIGO and Advanced Virgo on the optimistic side are incompatible with the constraints set by our analysis.Comment: 5 pages, 3 figures; accepted for publication in ApJ

    Neutron-star radius constraints from GW170817 and future detections

    Full text link
    We introduce a new, powerful method to constrain properties of neutron stars (NSs). We show that the total mass of GW170817 provides a reliable constraint on the stellar radius if the merger did not result in a prompt collapse as suggested by the interpretation of associated electromagnetic emission. The radius R_1.6 of nonrotating NSs with a mass of 1.6 M_sun can be constrained to be larger than 10.68_{-0.04}^{+0.15} km, and the radius R_max of the nonrotating maximum mass configuration must be larger than 9.60_{-0.03}^{+0.14} km. We point out that detections of future events will further improve these constraints. Moreover, we show that a future event with a signature of a prompt collapse of the merger remnant will establish even stronger constraints on the NS radius from above and the maximum mass M_max of NSs from above. These constraints are particularly robust because they only require a measurement of the chirp mass and a distinction between prompt and delayed collapse of the merger remnant, which may be inferred from the electromagnetic signal or even from the presence/absence of a ringdown gravitational-wave (GW) signal. This prospect strengthens the case of our novel method of constraining NS properties, which is directly applicable to future GW events with accompanying electromagnetic counterpart observations. We emphasize that this procedure is a new way of constraining NS radii from GW detections independent of existing efforts to infer radius information from the late inspiral phase or postmerger oscillations, and it does not require particularly loud GW events.Comment: 7 pages, 5 figures, accepted for publication in ApJ

    Neutron-powered precursors of kilonovae

    Full text link
    The merger of binary neutron stars (NSs) ejects a small quantity of neutron rich matter, the radioactive decay of which powers a day to week long thermal transient known as a kilonova. Most of the ejecta remains sufficiently dense during its expansion that all neutrons are captured into nuclei during the r-process. However, recent general relativistic merger simulations by Bauswein and collaborators show that a small fraction of the ejected mass (a few per cent, or ~1e-4 Msun) expands sufficiently rapidly for most neutrons to avoid capture. This matter originates from the shocked-heated interface between the merging NSs. Here we show that the beta-decay of these free neutrons in the outermost ejecta powers a `precursor' to the main kilonova emission, which peaks on a timescale of a few hours following merger at U-band magnitude ~22 (for an assumed distance of 200 Mpc). The high luminosity and blue colors of the neutron precursor render it a potentially important counterpart to the gravitational wave source, that may encode valuable information on the properties of the merging binary (e.g. NS-NS versus NS-black hole) and the NS equation of state. Future work is necessary to assess the robustness of the fast moving ejecta and the survival of free neutrons in the face of neutrino absorptions, although the precursor properties are robust to a moderate amount of leptonization. Our results provide additional motivation for short latency gravitational wave triggers and rapid follow-up searches with sensitive ground based telescopes.Comment: 6 pages, 5 figures, accepted to MNRAS main journa

    Neutron-star merger ejecta as obstacles to neutrino-powered jets of gamma-ray bursts

    Full text link
    We present the first special relativistic, axisymmetric hydrodynamic simulations of black hole-torus systems (approximating general relativistic gravity) as remnants of binary-neutron star (NS-NS) and neutron star-black hole (NS-BH) mergers, in which the viscously driven evolution of the accretion torus is followed with self-consistent energy-dependent neutrino transport and the interaction with the cloud of dynamical ejecta expelled during the NS-NS merging is taken into account. The modeled torus masses, BH masses and spins, and the ejecta masses, velocities, and spatial distributions are adopted from relativistic merger simulations. We find that energy deposition by neutrino annihilation can accelerate outflows with initially high Lorentz factors along polar low-density funnels, but only in mergers with extremely low baryon pollution in the polar regions. NS-BH mergers, where polar mass ejection during the merging phase is absent, provide sufficiently baryon-poor environments to enable neutrino-powered, ultrarelativistic jets with terminal Lorentz factors above 100 and considerable dynamical collimation, favoring short gamma-ray bursts (sGRBs), although their typical energies and durations might be too small to explain the majority of events. In the case of NS-NS mergers, however, neutrino emission of the accreting and viscously spreading torus is too short and too weak to yield enough energy for the outflows to break out from the surrounding ejecta shell as highly relativistic jets. We conclude that neutrino annihilation alone cannot power sGRBs from NS-NS mergers.Comment: 7 pages, 4 figures, minor revisions compared to original version, accepted for publication in ApJ Letter
    • …
    corecore