10 research outputs found

    Organophosphonate bridged anatase mesocrystals: low temperature crystallization, thermal growth and hydrogen photo-evolution

    Full text link
    The sol-gel co-condensation of organo-phosphonates to titanium alkoxides enables access to novel organic-inorganic hybrids based on phosphonate-bridged titanium dioxide. In this contribution, we bring new perspectives to the long established sol-gel mineralization of titanium alkoxide species, by harnessing the virtues of the well-designed phosphonate-terminated phosphorus dendrimers as reactive amphiphilic nanoreactor, confined medium and cross-linked template to generate discrete crystalline anatase nanoparticles at low temperature (T = 60 degrees C). An accurate investigation on several parameters (dendrimer generation, dendrimer-to-titanium alkoxide ratio, precursor reactivity, temperature, solvent nature, salt effect) allows a correlation between the network condensation, the opening porous framework and the crystalline phase formation. The evolution of the dendrimer skeleton upon heat treatment has been deeply monitored by means of P-31 NMR, XPS and Raman spectroscopy. Increasing the heteroatom content within a titania network provides the driving force for enhancing their photocatalytic water splitting ability for hydrogen production.Brahmi, Y.; Katir, N.; Macia Agullo, JA.; Primo Arnau, AM.; Bousmina, M.; Majoral, J.; García Gómez, H.... (2015). Organophosphonate bridged anatase mesocrystals: low temperature crystallization, thermal growth and hydrogen photo-evolution. Dalton Transactions. 44(35):15544-15556. doi:10.1039/c5dt02367jS1554415556443

    Karstic landscape detection using electrical resistivity tomography in northeast Algerian

    No full text
    Sinkhole (doline) collapse is one of the major natural hazards threatening people and property in the Middle East and North Africa (MENA) region, especially if the bedrock structure is epi-karstic, covered by encrusted material. Many dolines-avens collapses have been recorded in urban and rural areas in Northeast Algeria. Our study identifies localized deformation that may be caused by a sinkhole activity based on the electrical resistivity tomography (ERT) imaging in Setifian high plains. For this task, we conducted 2-D Wenner and Wenner-Schlumberger transects profiles. The geological and hydrogeological study helped to calibrate the resistivity model, and in this regard, expound on the proneness of the limestone layer to collapse. The obtained model highlights the heterogeneity of the subsurface. The inverted transects allowed the investigation of 20 m depth with Wenner array and 52 m with Wenner-Schlumberger. The Wenner inverted models imaged the chimney and different karst networks until 20 m depth; even as the Wenner-Schlumberger models imaged a new karstic cavity in the limestone layer. ERT imaging has once again proven its effectiveness in mapping sinkholes based on its ability to detect resistivity. Our research can certainly benefit karst collapse monitoring in other areas of the high plain region

    Comparison of phenol adsorption property and mechanism onto different moroccan clays

    Get PDF
    This study focuses on the removal of phenol from aqueous media using Agouraï clay (Fes-Meknes-Morocco region) and Geulmima clay (Draa Tafilalet region). The characterization of the clay by Fourier Transform Infrared (FTIR) Spectroscopy, X-ray diffraction (XRD), N2 adsorption (BET), Scanning Electron Microscopy (SEM), and Thermogravimetric and differential thermal analysis (DTA/GTA) indicates that it is mainly composed of quartz, kaolinite, and illite. The results showed that raw Clay Agourai (RCA) and raw Clay Geulmima (RCG) adsorbed phenol very quickly and reached equilibrium after 30 min. Thermodynamic parameters reveal the physical nature of the adsorption, the spontaneity, and the sequence of the process. However, the structure and structural characterization of the solid before and after phenol adsorption indicated that the mechanism of the reaction was electrostatic and that hydrogen bonding played an important role in RCG, while kinetic modeling showed the pseudo-second-order model dynamics. The physics-statistics modeling was employed for describing the isotherm adsorption for both systems. It was found that the monolayer model with two different energy sites best describes adsorption irrespective of the system. The model indicates that the receptor density of each clay direct influences the adsorption capacity, demonstrating that the composition of the clay is the main source of the difference. Thermodynamic simulations have shown that the adsorption of phenol is spontaneous and endothermic, irrespective of the system. In addition, thermodynamic simulations show that the RCG could be adsorbed even further since the equilibrium was not achieved for any thermodynamic variable. The strength of this study lies in the determination of the adsorption mechanism of phenol on clay materials and the optimum values of temperature and pH

    Biological Activity of Mesoporous Dendrimer-Coated Titanium Dioxide: Insight on the Role of the Surface–Interface Composition and the Framework Crystallinity

    No full text
    Hitherto, the field of nanomedicine has been overwhelmingly dominated by the use of mesoporous organosilicas compared to their metal oxide congeners. Despite their remarkable reactivity, titanium oxide-based materials have been seldom evaluated and little knowledge has been gained with respect to their “structure–biological activity” relationship. Herein, a fruitful association of phosphorus dendrimers (both “ammonium-terminated” and “phosphonate-terminated”) and titanium dioxide has been performed by means of the sol–gel process, resulting in mesoporous dendrimer-coated nanosized crystalline titanium dioxide. A similar organo-coating has been reproduced using single branch-mimicking dendrimers that allow isolation of an amorphous titanium dioxide. The impact of these materials on red blood cells was evaluated by studying cell hemolysis. Next, their cytotoxicity toward B14 Chinese fibroblasts and their antimicrobial activity were also investigated. Based on their variants (cationic versus anionic terminal groups and amorphous versus crystalline titanium dioxide phase), better understanding of the role of the surface–interface composition and the nature of the framework has been gained. No noticeable discrimination was observed for amorphous and crystalline material. In contrast, hemolysis and cytotoxicity were found to be sensitive to the nature of the interface composition, with the ammonium-terminated dendrimer-coated titanium dioxide being the most hemolytic and cytotoxic material. This surface-functionalization opens the door for creating a new synergistic machineries mechanism at the cellular level and seems promising for tailoring the biological activity of nanosized organic–inorganic hybrid materials

    Effect of anakinra versus usual care in adults in hospital with COVID-19 and mild-to-moderate pneumonia (CORIMUNO-ANA-1): a randomised controlled trial

    No full text
    International audienc

    Sarilumab in adults hospitalised with moderate-to-severe COVID-19 pneumonia (CORIMUNO-SARI-1): An open-label randomised controlled trial

    No full text
    International audienc

    Effect of Tocilizumab vs Usual Care in Adults Hospitalized With COVID-19 and Moderate or Severe Pneumonia

    No full text
    International audienceImportance Severe pneumonia with hyperinflammation and elevated interleukin-6 is a common presentation of coronavirus disease 2019 (COVID-19).Objective To determine whether tocilizumab (TCZ) improves outcomes of patients hospitalized with moderate-to-severe COVID-19 pneumonia.Design, Setting, and Particpants This cohort-embedded, investigator-initiated, multicenter, open-label, bayesian randomized clinical trial investigating patients with COVID-19 and moderate or severe pneumonia requiring at least 3 L/min of oxygen but without ventilation or admission to the intensive care unit was conducted between March 31, 2020, to April 18, 2020, with follow-up through 28 days. Patients were recruited from 9 university hospitals in France. Analyses were performed on an intention-to-treat basis with no correction for multiplicity for secondary outcomes.Interventions Patients were randomly assigned to receive TCZ, 8 mg/kg, intravenously plus usual care on day 1 and on day 3 if clinically indicated (TCZ group) or to receive usual care alone (UC group). Usual care included antibiotic agents, antiviral agents, corticosteroids, vasopressor support, and anticoagulants.Main Outcomes and Measures Primary outcomes were scores higher than 5 on the World Health Organization 10-point Clinical Progression Scale (WHO-CPS) on day 4 and survival without need of ventilation (including noninvasive ventilation) at day 14. Secondary outcomes were clinical status assessed with the WHO-CPS scores at day 7 and day 14, overall survival, time to discharge, time to oxygen supply independency, biological factors such as C-reactive protein level, and adverse events.Results Of 131 patients, 64 patients were randomly assigned to the TCZ group and 67 to UC group; 1 patient in the TCZ group withdrew consent and was not included in the analysis. Of the 130 patients, 42 were women (32%), and median (interquartile range) age was 64 (57.1-74.3) years. In the TCZ group, 12 patients had a WHO-CPS score greater than 5 at day 4 vs 19 in the UC group (median posterior absolute risk difference [ARD] −9.0%; 90% credible interval [CrI], −21.0 to 3.1), with a posterior probability of negative ARD of 89.0% not achieving the 95% predefined efficacy threshold. At day 14, 12% (95% CI −28% to 4%) fewer patients needed noninvasive ventilation (NIV) or mechanical ventilation (MV) or died in the TCZ group than in the UC group (24% vs 36%, median posterior hazard ratio [HR] 0.58; 90% CrI, 0.33-1.00), with a posterior probability of HR less than 1 of 95.0%, achieving the predefined efficacy threshold. The HR for MV or death was 0.58 (90% CrI, 0.30 to 1.09). At day 28, 7 patients had died in the TCZ group and 8 in the UC group (adjusted HR, 0.92; 95% CI 0.33-2.53). Serious adverse events occurred in 20 (32%) patients in the TCZ group and 29 (43%) in the UC group (P = .21).Conclusions and Relevance In this randomized clinical trial of patients with COVID-19 and pneumonia requiring oxygen support but not admitted to the intensive care unit, TCZ did not reduce WHO-CPS scores lower than 5 at day 4 but might have reduced the risk of NIV, MV, or death by day 14. No difference on day 28 mortality was found. Further studies are necessary for confirming these preliminary results.Trial Registration ClinicalTrials.gov Identifier: NCT0433180
    corecore