23 research outputs found

    Tidal debris from Omega Centauri discovered with unsupervised machine learning

    Full text link
    The gravitational interactions between the Milky Way and in-falling satellites offer a wealth of information about the formation and evolution of our Galaxy. In this paper, we explore the high-dimensionality of the GALAH DR3 plus Gaia eDR3 data set to identify new tidally stripped candidate stars of the nearby star cluster Omega Centauri (ωCen\omega\,\mathrm{Cen}). We investigate both the chemical and dynamical parameter space simultaneously, and identify cluster candidates that are spatially separated from the main cluster body, in regions where contamination by halo field stars is high. Most notably, we find candidates for ωCen\omega\,\mathrm{Cen} scattered in the halo extending to more than 5050^{\circ} away from the main body of the cluster. Using a grid of simulated stellar streams generated with ωCen\omega\,\mathrm{Cen} like orbital properties, we then compare the on sky distribution of these candidates to the models. The results suggest that if ωCen\omega\,\mathrm{Cen} had a similar initial mass as its present day mass, then we can place a lower limit on its time of accretion at tacc>7_{\mathrm{acc}} > 7 Gyr ago. Alternatively, if the initial stellar mass was significantly larger, as would be expected if ωCen\omega\,\mathrm{Cen} is the remnant core of a dwarf Galaxy, then we can constrain the accretion time to tacc>4_{\mathrm{acc}} > 4 Gyr ago. Taken together, these results are consistent with the scenario that ωCen\omega\,\mathrm{Cen} is the remnant core of a disrupted dwarf galaxy.Comment: 22 pages, 19 figures, 2 tables, accepted for publication in MNRA

    Kinematics with Gaia DR2 : the force of a dwarf

    Get PDF
    We use Gaia DR2 astrometric and line-of-sight velocity information combined with two sets of distances obtained with a Bayesian inference method to study the 3D velocity distribution in the Milky Way disc. We search for variations in all Galactocentric cylindrical velocity components (Vϕ, VR, and Vz) with Galactic radius, azimuth, and distance from the disc mid-plane. We confirm recent work showing that bulk vertical motions in the R–z plane are consistent with a combination of breathing and bending modes. In the x–y plane, we show that, although the amplitudes change, the structure produced by these modes is mostly invariant as a function of distance from the plane. Comparing to two different Galactic disc models, we demonstrate that the observed patterns can drastically change in short time intervals, showing the complexity of understanding the origin of vertical perturbations. A strong radial VR gradient was identified in the inner disc, transitioning smoothly from 16 km s−1 kpc−1 at an azimuth of 30° < ϕ < 45° ahead of the Sun-Galactic centre line to −16 km s−1 kpc−1 at an azimuth of −45° < ϕ < −30° lagging the solar azimuth. We use a simulation with no significant recent mergers to show that exactly the opposite trend is expected from a barred potential, but overestimated distances can flip this trend to match the data. Alternatively, using an N-body simulation of the Sagittarius dwarf–Milky Way interaction, we demonstrate that a major recent perturbation is necessary to reproduce the observations. Such an impact may have strongly perturbed the existing bar or even triggered its formation in the last 1–2 Gyr

    The Pristine Survey – VI. The first three years of medium-resolution follow-up spectroscopy of Pristine EMP star candidates★

    Get PDF
    We present the results of a 3-year long, medium-resolution spectroscopic campaign aimed at identifying very metal-poor stars from candidates selected with the CaHK, metallicity-sensitive Pristine survey. The catalogue consists of a total of 1007 stars, and includes 146 rediscoveries of metal-poor stars already presented in previous surveys, 707 new very metal-poor stars with [Fe/H]<−2.0⁠, and 95 new extremely metal-poor stars with [Fe/H]<−3.0⁠. We provide a spectroscopic [Fe/H] for every star in the catalogue, and [C/Fe] measurements for a subset of the stars (10% with [Fe/H]<−3 and 24% with −3<[Fe/H]<−2⁠) for which a carbon determination is possible, contingent mainly on the carbon abundance, effective temperature and S/N of the stellar spectra. We find an average carbon enhancement fraction ([C/Fe] ≥ +0.7) of 41 ± 4% for stars with −3<[Fe/H]<−2 and 58 ± 14% for stars with [Fe/H]<−3⁠, and report updated success rates for the Pristine survey of 56 % and 23 % to recover stars with [Fe/H]<−2.5 and [Fe/H]<−3⁠, respectively. Finally, we discuss the current status of the survey and its preparation for providing targets to upcoming multi-object spectroscopic surveys such as WEAVE

    The wide-field, multiplexed, spectroscopic facility WEAVE : survey design, overview, and simulated implementation

    Get PDF
    Funding for the WEAVE facility has been provided by UKRI STFC, the University of Oxford, NOVA, NWO, Instituto de Astrofísica de Canarias (IAC), the Isaac Newton Group partners (STFC, NWO, and Spain, led by the IAC), INAF, CNRS-INSU, the Observatoire de Paris, Région Île-de-France, CONCYT through INAOE, Konkoly Observatory (CSFK), Max-Planck-Institut für Astronomie (MPIA Heidelberg), Lund University, the Leibniz Institute for Astrophysics Potsdam (AIP), the Swedish Research Council, the European Commission, and the University of Pennsylvania.WEAVE, the new wide-field, massively multiplexed spectroscopic survey facility for the William Herschel Telescope, will see first light in late 2022. WEAVE comprises a new 2-degree field-of-view prime-focus corrector system, a nearly 1000-multiplex fibre positioner, 20 individually deployable 'mini' integral field units (IFUs), and a single large IFU. These fibre systems feed a dual-beam spectrograph covering the wavelength range 366-959 nm at R ∼ 5000, or two shorter ranges at R ∼ 20,000. After summarising the design and implementation of WEAVE and its data systems, we present the organisation, science drivers and design of a five- to seven-year programme of eight individual surveys to: (i) study our Galaxy's origins by completing Gaia's phase-space information, providing metallicities to its limiting magnitude for ∼ 3 million stars and detailed abundances for ∼ 1.5 million brighter field and open-cluster stars; (ii) survey ∼ 0.4 million Galactic-plane OBA stars, young stellar objects and nearby gas to understand the evolution of young stars and their environments; (iii) perform an extensive spectral survey of white dwarfs; (iv) survey  ∼ 400 neutral-hydrogen-selected galaxies with the IFUs; (v) study properties and kinematics of stellar populations and ionised gas in z 1 million spectra of LOFAR-selected radio sources; (viii) trace structures using intergalactic/circumgalactic gas at z > 2. Finally, we describe the WEAVE Operational Rehearsals using the WEAVE Simulator.PostprintPeer reviewe

    The wide-field, multiplexed, spectroscopic facility WEAVE: Survey design, overview, and simulated implementation

    Full text link
    WEAVE, the new wide-field, massively multiplexed spectroscopic survey facility for the William Herschel Telescope, will see first light in late 2022. WEAVE comprises a new 2-degree field-of-view prime-focus corrector system, a nearly 1000-multiplex fibre positioner, 20 individually deployable 'mini' integral field units (IFUs), and a single large IFU. These fibre systems feed a dual-beam spectrograph covering the wavelength range 366-959\,nm at R5000R\sim5000, or two shorter ranges at R20000R\sim20\,000. After summarising the design and implementation of WEAVE and its data systems, we present the organisation, science drivers and design of a five- to seven-year programme of eight individual surveys to: (i) study our Galaxy's origins by completing Gaia's phase-space information, providing metallicities to its limiting magnitude for \sim3 million stars and detailed abundances for 1.5\sim1.5 million brighter field and open-cluster stars; (ii) survey 0.4\sim0.4 million Galactic-plane OBA stars, young stellar objects and nearby gas to understand the evolution of young stars and their environments; (iii) perform an extensive spectral survey of white dwarfs; (iv) survey 400\sim400 neutral-hydrogen-selected galaxies with the IFUs; (v) study properties and kinematics of stellar populations and ionised gas in z<0.5z<0.5 cluster galaxies; (vi) survey stellar populations and kinematics in 25000\sim25\,000 field galaxies at 0.3z0.70.3\lesssim z \lesssim 0.7; (vii) study the cosmic evolution of accretion and star formation using >1>1 million spectra of LOFAR-selected radio sources; (viii) trace structures using intergalactic/circumgalactic gas at z>2z>2. Finally, we describe the WEAVE Operational Rehearsals using the WEAVE Simulator.Comment: 41 pages, 27 figures, accepted for publication by MNRA

    The wide-field, multiplexed, spectroscopic facility WEAVE: Survey design, overview, and simulated implementation

    Get PDF
    WEAVE, the new wide-field, massively multiplexed spectroscopic survey facility for the William Herschel Telescope, will see first light in late 2022. WEAVE comprises a new 2-degree field-of-view prime-focus corrector system, a nearly 1000-multiplex fibre positioner, 20 individually deployable 'mini' integral field units (IFUs), and a single large IFU. These fibre systems feed a dual-beam spectrograph covering the wavelength range 366−959\,nm at R∼5000, or two shorter ranges at R∼20000. After summarising the design and implementation of WEAVE and its data systems, we present the organisation, science drivers and design of a five- to seven-year programme of eight individual surveys to: (i) study our Galaxy's origins by completing Gaia's phase-space information, providing metallicities to its limiting magnitude for ∼3 million stars and detailed abundances for ∼1.5 million brighter field and open-cluster stars; (ii) survey ∼0.4 million Galactic-plane OBA stars, young stellar objects and nearby gas to understand the evolution of young stars and their environments; (iii) perform an extensive spectral survey of white dwarfs; (iv) survey ∼400 neutral-hydrogen-selected galaxies with the IFUs; (v) study properties and kinematics of stellar populations and ionised gas in z1 million spectra of LOFAR-selected radio sources; (viii) trace structures using intergalactic/circumgalactic gas at z>2. Finally, we describe the WEAVE Operational Rehearsals using the WEAVE Simulator
    corecore