86 research outputs found

    Development of Eighteen Microsatellite Markers in Anemone amurensis (Ranunculaceae) and Cross-Amplification in Congeneric Species

    Get PDF
    Polyploidy plays an important role in the evolution of plant genomes. To enable the investigation of the polyploidy events within the genus Anemone, we developed eighteen microsatellite markers from the hexaploid species A. amurensis (Ranunculaceae), and tested their transferability in five closely related species. The number of total alleles (NA) for each resulting locus varied from one to eight. The polymorphism information content (PIC) and Nei’s genetic diversity (NGD) for these microsatellites ranged from 0.00 to 0.71 and 0.00 to 0.91, respectively. For each population, the NA was one to seven, and the values of PIC and NGD varied from 0.00 to 0.84 and 0.00 to 0.95, respectively. In addition, most of these microsatellites can be amplified successfully in the congeneric species. These microsatellite primers provide us an opportunity to study the polyploid evolution in the genus Anemone

    The emission positions of kHz QPOs and Kerr spacetime influence

    Full text link
    Based the Alfven wave oscillation model (AWOM) and relativistic precession model (RPM) for twin kHz QPOs, we estimate the emission positions of most detected kHz QPOs to be at r=18+-3 km (R/15km) except Cir X-1 at r = 30\+-5 km (R/15km). For the proposed Keplerian frequency as an upper limit to kHz QPO, the spin effects in Kerr Spacetime are discussed, which have about a 5% (2%) modification for that of the Schwarzchild case for the spin frequency of 1000 (400) Hz.The application to the four typical QPO sources, Cir X-1, Sco X-1, SAX J1808.4-3658 and XTE 1807-294, is mentioned.Comment: Science China, Physics, Mechanics & Astronomy, 2010, 53, NO.

    The mHz quasi-regular modulations of 4U 1630--47 during its 1998 outburst

    Full text link
    We present the results of a detailed timing and spectral analysis of the quasi-regular modulation (QRM) phenomenon in the black hole X-ray binary 4U 1630--47 during its 1998 outburst observed by Rossi X-ray Timing Explore (RXTE). We find that the \sim 50-110 mHz QRM is flux dependent, and the QRM is detected with simultaneous low frequency quasi-periodic oscillations (LFQPOs). According to the behavior of the power density spectrum, we divide the observations into four groups. In the first group, namely behavior A, LFQPOs are detected, but no mHz QRM. The second group, namely behavior B, a QRM with frequency above \sim 88 mHz is detected and the \sim 5 Hz and \sim 7 Hz LFQPOs are almost overlapping. In the third group, namely behavior C, the QRM frequency below \sim 88 mHz is detected and the LFQPOs are significantly separated. In the forth group, namely behavior D, neither QRM nor LFQPOs are detected. We study the energy-dependence of the fractional rms, centroid frequency, and phase-lag of QRM and LFQPOs for behavior B and C. We then study the evolution of QRM and find that the frequency of QRM increases with hardness, while its rms decreases with hardness. We also analyze the spectra of each observation, and find that the QRM rms of behavior B has a positive correlation with Fpowerlaw\rm F_{\rm powerlaw} / Ftotal\rm F_{\rm total}. Finally, we give our understanding for this mHz QRM phenomena.Comment: 14pages, 15 figure

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    State of the climate in 2018

    Get PDF
    In 2018, the dominant greenhouse gases released into Earth’s atmosphere—carbon dioxide, methane, and nitrous oxide—continued their increase. The annual global average carbon dioxide concentration at Earth’s surface was 407.4 ± 0.1 ppm, the highest in the modern instrumental record and in ice core records dating back 800 000 years. Combined, greenhouse gases and several halogenated gases contribute just over 3 W m−2 to radiative forcing and represent a nearly 43% increase since 1990. Carbon dioxide is responsible for about 65% of this radiative forcing. With a weak La Niña in early 2018 transitioning to a weak El Niño by the year’s end, the global surface (land and ocean) temperature was the fourth highest on record, with only 2015 through 2017 being warmer. Several European countries reported record high annual temperatures. There were also more high, and fewer low, temperature extremes than in nearly all of the 68-year extremes record. Madagascar recorded a record daily temperature of 40.5°C in Morondava in March, while South Korea set its record high of 41.0°C in August in Hongcheon. Nawabshah, Pakistan, recorded its highest temperature of 50.2°C, which may be a new daily world record for April. Globally, the annual lower troposphere temperature was third to seventh highest, depending on the dataset analyzed. The lower stratospheric temperature was approximately fifth lowest. The 2018 Arctic land surface temperature was 1.2°C above the 1981–2010 average, tying for third highest in the 118-year record, following 2016 and 2017. June’s Arctic snow cover extent was almost half of what it was 35 years ago. Across Greenland, however, regional summer temperatures were generally below or near average. Additionally, a satellite survey of 47 glaciers in Greenland indicated a net increase in area for the first time since records began in 1999. Increasing permafrost temperatures were reported at most observation sites in the Arctic, with the overall increase of 0.1°–0.2°C between 2017 and 2018 being comparable to the highest rate of warming ever observed in the region. On 17 March, Arctic sea ice extent marked the second smallest annual maximum in the 38-year record, larger than only 2017. The minimum extent in 2018 was reached on 19 September and again on 23 September, tying 2008 and 2010 for the sixth lowest extent on record. The 23 September date tied 1997 as the latest sea ice minimum date on record. First-year ice now dominates the ice cover, comprising 77% of the March 2018 ice pack compared to 55% during the 1980s. Because thinner, younger ice is more vulnerable to melting out in summer, this shift in sea ice age has contributed to the decreasing trend in minimum ice extent. Regionally, Bering Sea ice extent was at record lows for almost the entire 2017/18 ice season. For the Antarctic continent as a whole, 2018 was warmer than average. On the highest points of the Antarctic Plateau, the automatic weather station Relay (74°S) broke or tied six monthly temperature records throughout the year, with August breaking its record by nearly 8°C. However, cool conditions in the western Bellingshausen Sea and Amundsen Sea sector contributed to a low melt season overall for 2017/18. High SSTs contributed to low summer sea ice extent in the Ross and Weddell Seas in 2018, underpinning the second lowest Antarctic summer minimum sea ice extent on record. Despite conducive conditions for its formation, the ozone hole at its maximum extent in September was near the 2000–18 mean, likely due to an ongoing slow decline in stratospheric chlorine monoxide concentration. Across the oceans, globally averaged SST decreased slightly since the record El Niño year of 2016 but was still far above the climatological mean. On average, SST is increasing at a rate of 0.10° ± 0.01°C decade−1 since 1950. The warming appeared largest in the tropical Indian Ocean and smallest in the North Pacific. The deeper ocean continues to warm year after year. For the seventh consecutive year, global annual mean sea level became the highest in the 26-year record, rising to 81 mm above the 1993 average. As anticipated in a warming climate, the hydrological cycle over the ocean is accelerating: dry regions are becoming drier and wet regions rainier. Closer to the equator, 95 named tropical storms were observed during 2018, well above the 1981–2010 average of 82. Eleven tropical cyclones reached Saffir–Simpson scale Category 5 intensity. North Atlantic Major Hurricane Michael’s landfall intensity of 140 kt was the fourth strongest for any continental U.S. hurricane landfall in the 168-year record. Michael caused more than 30 fatalities and 25billion(U.S.dollars)indamages.InthewesternNorthPacific,SuperTyphoonMangkhutledto160fatalitiesand25 billion (U.S. dollars) in damages. In the western North Pacific, Super Typhoon Mangkhut led to 160 fatalities and 6 billion (U.S. dollars) in damages across the Philippines, Hong Kong, Macau, mainland China, Guam, and the Northern Mariana Islands. Tropical Storm Son-Tinh was responsible for 170 fatalities in Vietnam and Laos. Nearly all the islands of Micronesia experienced at least moderate impacts from various tropical cyclones. Across land, many areas around the globe received copious precipitation, notable at different time scales. Rodrigues and Réunion Island near southern Africa each reported their third wettest year on record. In Hawaii, 1262 mm precipitation at Waipā Gardens (Kauai) on 14–15 April set a new U.S. record for 24-h precipitation. In Brazil, the city of Belo Horizonte received nearly 75 mm of rain in just 20 minutes, nearly half its monthly average. Globally, fire activity during 2018 was the lowest since the start of the record in 1997, with a combined burned area of about 500 million hectares. This reinforced the long-term downward trend in fire emissions driven by changes in land use in frequently burning savannas. However, wildfires burned 3.5 million hectares across the United States, well above the 2000–10 average of 2.7 million hectares. Combined, U.S. wildfire damages for the 2017 and 2018 wildfire seasons exceeded $40 billion (U.S. dollars)

    A note on "scheduling of nonresumable jobs and flexible maintenance activities on a single machine to minimize makespan"

    No full text
    In a recent paper, Chen [J.S. Chen, Scheduling of nonresumable jobs and flexible maintenance activities on a single machine to minimize makespan, European Journal of Operational Research 190 (2008) 90-102] proposes a heuristic algorithm to deal with the problem Scheduling of Nonresumable Jobs and Flexible Maintenance Activities on A Single Machine to Minimize Makespan. Chen also provides computational results to demonstrate its effectiveness. In this note, we first show that the worst-case performance bound of this heuristic algorithm is 2. Then we show that there is no polynomial time approximation algorithm with a worst-case performance bound less than 2 unless P=NP, which implies that Chen's heuristic algorithm is the best possible polynomial time approximation algorithm for the considered scheduling problem.Scheduling Single machine Maintenance Heuristic algorithm Worst-case analysis

    Numerical simulation of rubber coating circular plates subjected to near-field underwater explosion

    No full text
    [Objectives] To study the coating effects on structures subjected to near-field underwater explosion, [Methods] the coupling Runge-Kutta Discontinuous Galerkin Method, Boundary Element Method and Finite Element Method are developed in this paper to solve a rubber coating circular plate subjected to near-field underwater explosion. The results are compared with experimentally obtained wet face pressure and bubble shape to verify the method, and the explosion bubble response to the flexible boundary is discussed. [Results] The results indicate that the rubber coating plate will shorten the pulse width of the shockwave, but the cavitation collapse will occur more easily. In addition, solid rubber coating has little effect on the deformation of the explosion bubble. [Conclusions] This research can provide a theoretical basis and technical support for the coating design and optimization of warships subjected to near-field underwater explosion

    Shock mitigation properties of compound claddings subjected to underwater explosion loads

    No full text
    [Objectives] To improve the shock resistance ability of submarines, [Methods] an anti-shock cladding for submarines which consists of a compound coating with rubber and plastic foam is proposed on the basis of the shock environment of submarines. The numerical model is established by Abaqus/Explicit to analyze the dynamic response of anti-shock cladding under the combined loads of hydrostatic pressure and underwater explosion loads. [Results] The results indicate that the deformation of the cladding is negligible under hydrostatic pressure, and the shock load is largely mitigated when the yield stress of the cladding is higher than the hydrostatic pressure. Conversely, the deformation of the cladding is great under hydrostatic pressure and the shock mitigation effects of the coating are weakened when the yield stress of the cladding is lower than the hydrostatic pressure. As such, the yield stress of the cladding should be higher than the hydrostatic pressure, and densification should be avoided. [Conclusions] The research findings in this paper can provide guidance for the design of anti-shock cladding for submarines
    corecore