86 research outputs found

    Adaptations for finding irregularly shaped disease clusters

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent adaptations of the spatial scan approach to detecting disease clusters have addressed the problem of finding clusters that occur in non-compact and non-circular shapes – such as along roads or river networks. Some of these approaches may have difficulty defining cluster boundaries precisely, and tend to over-fit data with very irregular (and implausible) clusters shapes.</p> <p>Results & Discussion</p> <p>We describe two simple adaptations to these approaches that can be used to improve the effectiveness of irregular disease cluster detection. The first adaptation penalizes very irregular cluster shapes based on a measure of connectivity (non-connectivity penalty). The second adaptation prevents searches from combining smaller clusters into large super-clusters (depth limit). We conduct experiments with simulated data in order to observe the performance of these adaptations on a number of synthetic cluster shapes.</p> <p>Conclusion</p> <p>Our results suggest that the combination of these two adaptations may increase the ability of a cluster detection method to find irregular shapes without affecting its ability to find more regular (i.e., compact) shapes. The depth limit in particular is effective when it is deemed important to distinguish nearby clusters from each other. We suggest that these adaptations of adjacency-constrained spatial scans are particularly well suited to chronic disease and injury surveillance.</p

    Examining the relationship between active travel, weather, and the built environment: A multilevel approach using a GPS-enhanced dataset

    Get PDF
    This study examines how the built environment and weather conditions influence the use of walking as a mode of transport. The Halifax Regional Municipality in Nova Scotia, Canada is the study area for this work. Data are derived from three sources: a socio-demographic questionnaire and a GPS-enhanced prompted recall time-use diary collected between April 2007 and May 2008 as part of the Halifax Space-Time Activity Research project, a daily meteorological summary from Environment Canada, and a comprehensive GIS dataset from the regional municipality. Two binary logit multilevel models are estimated to examine how the propensity to use walking is influenced by the built environment and weather while controlling for socio-demographic characteristics. The built environment is measured via five attributes in one model and a walkability index (derived from the five attributes) in the other. Weather conditions are shown to affect walking use in both models. Although the walkability index is significant, the results demonstrate that this significance is driven by specific attributes of the built environment—in the case of this study, population density and to a lesser extent, pedestrian infrastructure

    An integrated framework for the geographic surveillance of chronic disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Geographic public health surveillance is concerned with describing and disseminating geographic information about disease and other measures of health to policy makers and the public. While methodological developments in the geographical analysis of disease are numerous, few have been integrated into a framework that also considers the effects of case ascertainment bias on the effectiveness of chronic disease surveillance.</p> <p>Results</p> <p>We present a framework for the geographic surveillance of chronic disease that integrates methodological developments in the spatial statistical analysis and case ascertainment. The framework uses an hierarchical approach to organize and model health information derived from an administrative health data system, and importantly, supports the detection and analysis of case ascertainment bias in geographic data. We test the framework on asthmatic data from Alberta, Canada. We observe high prevalence in south-western Alberta, particularly among Aboriginal females. We also observe that persons likely mistaken for asthmatics tend to be distributed in a pattern similar to asthmatics, suggesting that there may be an underlying social vulnerability to a variety of respiratory illnesses, or the presence of a diagnostic practice style effect. Finally, we note that clustering of asthmatics tends to occur at small geographic scales, while clustering of persons mistaken for asthmatics tends to occur at larger geographic scales.</p> <p>Conclusion</p> <p>Routine and ongoing geographic surveillance of chronic diseases is critical to developing an understanding of underlying epidemiology, and is critical to informing policy makers and the public about the health of the population.</p

    Dry weather induces outbreaks of human West Nile virus infections

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Since its first occurrence in the New York City area during 1999, West Nile virus (WNV) has spread rapidly across North America and has become a major public health concern in North America. By 2002, WNV was reported in 40 states and the District of Columbia with 4,156 human and 14,539 equine cases of infection. Mississippi had the highest human incidence rate of WNV during the 2002 epidemic in the United States. Epidemics of WNV can impose enormous impacts on local economies. Therefore, it is advantageous to predict human WNV risks for cost-effective controls of the disease and optimal allocations of limited resources. Understanding relationships between precipitation and WNV transmission is crucial for predicting the risk of the human WNV disease outbreaks under predicted global climate change scenarios.</p> <p>Methods</p> <p>We analyzed data on the human WNV incidences in the 82 counties of Mississippi in 2002, using standard morbidity ratio (SMR) and Bayesian hierarchical models, to determine relationships between precipitation and human WNV risks. We also entertained spatial autocorrelations of human WNV risks with conditional autocorrelative (CAR) models, implemented in WinBUGS 1.4.3.</p> <p>Results</p> <p>We observed an inverse relationship between county-level human WNV incidence risk and total annual rainfall during the previous year. Parameters representing spatial heterogeneity in the risk of human exposure to WNV improved model fit. Annual precipitation of the previous year was a predictor of spatial variation of WNV risk.</p> <p>Conclusions</p> <p>Our results have broad implications for risk assessment of WNV and forecasting WNV outbreaks. Assessing risk of vector-born infectious diseases will require understanding of complex ecological relationships. Based on the climatologically characteristic drought occurrence in the past and on climate model predictions for climate change and potentially greater drought occurrence in the future, we suggest that the frequency and relative risk of WNV outbreaks could increase.</p

    Unifying the spatial epidemiology and molecular evolution of emerging epidemics

    Get PDF
    We introduce a conceptual bridge between the previously unlinked fields of phylogenetics and mathematical spatial ecology, which enables the spatial parameters of an emerging epidemic to be directly estimated from sampled pathogen genome sequences. By using phylogenetic history to correct for spatial autocorrelation, we illustrate how a fundamental spatial variable, the diffusion coefficient, can be estimated using robust nonparametric statistics, and how heterogeneity in dispersal can be readily quantified. We apply this framework to the spread of the West Nile virus across North America, an important recent instance of spatial invasion by an emerging infectious disease. We demonstrate that the dispersal of West Nile virus is greater and far more variable than previously measured, such that its dissemination was critically determined by rare, long-range movements that are unlikely to be discerned during field observations. Our results indicate that, by ignoring this heterogeneity, previous models of the epidemic have substantially overestimated its basic reproductive number. More generally, our approach demonstrates that easily obtainable genetic data can be used to measure the spatial dynamics of natural populations that are otherwise difficult or costly to quantify

    A Rapid Evidence Appraisal of influenza vaccination in health workers: an important policy in an area of imperfect evidence

    Get PDF
    IntroductionThe World Health Organization recommends vaccination of health workers (HWs) against influenza, but low uptake is intransigent.We conducted a Rapid Evidence Appraisal on: the risk of influenza in HWs, transmission risk from HWs to patients, the benefit of HW vaccination, and strategies for improving uptake. We aimed to capture a ‘whole-of-system’ perspective to consider possible benefits for HWs, employers and patients.MethodsWe executed a comprehensive search of the available literature published from 2006 to 2018 in the English language. We developed search terms for seven separate questions following the PICO framework (population, intervention, comparators, outcomes) and queried nine databases.ResultsOf 3784 publications identified, 52 met inclusion criteria. Seven addressed HW influenza risk, of which four found increased risk; 15 addressed influenza vaccine benefit to HWs or their employers, of which 10 found benefit; 11 addressed influenza transmission from HWs to patients, of which 6 found evidence for transmission; 12 unique studies addressed whether vaccinating HWs produced patient benefit, of which 9 concluded benefits accrued. Regarding the number of HWs needed to vaccinate (NNV) to deliver patient benefit, NNV estimates ranged from 3 to 36,000 but were in significant disagreement. Fourteen studies provided insights on strategies to improve uptake; the strongest evidence was for mandatory vaccination.ConclusionsThe evidence on most questions related to influenza vaccination in HWs is mixed and often of low-quality. Substantial heterogeneity exists in terms of study designs and settings, making comparison between studies difficult. Notwithstanding these limitations, a majority of studies suggests that influenza vaccination benefit HWs and their employers; and HWs are implicated in transmission events. The effects of vaccinating HWs on patient morbidity and mortality may include reductions in all-cause mortality and influenza-like illness (ILI). Taken together, the evidence suggests that HW vaccination is an important policy for HWs themselves, their employers, and their patients

    Challenges to the surveillance of non-communicable diseases – a review of selected approaches

    Get PDF
    Background: The rising global burden of non-communicable diseases (NCDs) necessitates the institutionalization of surveillance systems to track trends and evaluate interventions. However, NCD surveillance capacities vary across high- and low- and middle-income countries. The objective of the review was to analyse existing literature with respect to structures of health facility-based NCD surveillance systems and the lessons low- and middle-income countries can learn in setting up and running these systems. Methods: A literature review was conducted using Pub Med, Web of Knowledge and WHOLIS databases to identify citations published in English language between 1993 and 2013. In total, 20 manuscripts met inclusion criteria: 12 studies were analysed in respect to the surveillance approach, eight supporting documents in respect to general and regional challenges in NCD surveillance. Results: Eleven of the 12 studies identified were conducted in high-income countries. Five studies had a single disease focus, three a multiple NCD focus and three covered communicable as well as non-communicable diseases. Nine studies were passive assisted sentinel surveillance systems, of which six focused on the primary care level and three had additional active surveillance components, i.e., population-based surveys. The supporting documents reveal that NCD surveillance is rather limited in most low- and middle-income countries despite the increasing disease burden and its socioeconomic impact. Major barriers include institutional surveillance capacities and hence data availability. Conclusions: The review suggests that given the complex system requirements, multiple surveillance approaches are necessary to collect comprehensive information for effective NCD surveillance. Sentinel augmented facility-based surveillance, preferably supported by population-based surveys, can provide improved evidence and help budget scarce resources. Electronic supplementary material: The online version of this article (doi:10.1186/s12889-015-2570-z) contains supplementary material, which is available to authorized users

    Ecological Niche of the 2003 West Nile Virus Epidemic in the Northern Great Plains of the United States

    Get PDF
    Background: The incidence of West Nile virus (WNv) has remained high in the northern Great Plains compared to the rest of the United States. However, the reasons for the sustained high risk of WNv transmission in this region have not been determined. To assess the environmental drivers of WNv in the northern Great Plains, we analyzed the county-level spatial pattern of human cases during the 2003 epidemic across a seven-state region. Methodology/Principal Findings: County-level data on WNv cases were examined using spatial cluster analysis, and were used to fit statistical models with weather, climate, and land use variables as predictors. In 2003 there was a single large cluster of elevated WNv risk encompassing North Dakota, South Dakota, and Nebraska along with portions of eastern Montana and Wyoming. The relative risk of WNv remained high within the boundaries of this cluster from 2004–2007. WNv incidence during the 2003 epidemic was found to have a stronger relationship with long-term climate patterns than with annual weather in either 2002 or 2003. WNv incidence increased with mean May–July temperature and had a unimodal relationship with total May–July precipitation. WNv incidence also increased with the percentage of irrigated cropland and with the percentage of the human population living in rural areas. Conclusions/Significance: The spatial pattern of WNv cases during the 2003 epidemic in the northern Great Plains was associated with both climatic gradients and land use patterns. These results were interpreted as evidence that environmental conditions across much of the northern Great Plains create a favorable ecological niche for Culex tarsalis, a particularly efficient vector of WNv. Further research is needed to determine the proximal causes of sustained WNv transmission and to enhance strategies for disease prevention
    corecore