169 research outputs found
Modeling asphalt pavement overlay transverse cracks using the genetic operation tree and Levenberg-Marquardt Method
[[abstract]]The Artificial Neural Network (ANN) and the nonlinear regression method are commonly used to build models from experimental data. However, the ANN has been criticized for incapable of providing clear relationships and physical meanings, and is usually regarded as a black box. The nonlinear regression method needs predefined and correct formula structures to process parameter search in terms of the minimal sum of square errors. Unfortunately, the formula structures of these models are often unclear and cannot be defined in advance. To overcome these challenges, this study proposes a novel approach, called ââLMGOT,ââ that integrates two optimization techniques: the LevenbergâMarquardt (LM) Method and the genetic operation tree (GOT). The GOT borrows the concept from the genetic algorithm, a famous algorithm for solving discrete optimization problems, to generate operation trees (OTs), which represent the structures of the formulas. Meanwhile, the LM takes advantage of its merit for solving nonlinear continuous optimization problems, and determines the coefficients in the GOTs that best fit the experimental data. This paper uses the LMGOT to investigate the data sets of pavement cracks from a 15-year experiment conducted by the Texas Departments of Transportation. Results show a concise formula for predicting the length of pavement transverse cracking, and indicate that the LMGOT is an efficient approach to building an accurate crack model.[[incitationindex]]SCI[[booktype]]紙
Anisotropic elasticity in confocal studies of colloidal crystals
We consider the theory of fluctuations of a colloidal solid observed in a
confocal slice. For a cubic crystal we study the evolution of the projected
elastic properties as a function of the anisotropy of the crystal using
numerical methods based on the fast Fourier transform. In certain situations of
high symmetry we find exact analytic results for the projected fluctuations.Comment: 6 pages, 7 figure
Study of Inclusive Strange-Baryon Production and Search for Pentaquarks in Two-Photon Collisions at LEP
Measurements of inclusive production of the Lambda, Xi- and Xi*(1530) baryons
in two-photon collisions with the L3 detector at LEP are presented. The
inclusive differential cross sections for Lambda and Xi- are measured as a
function of the baryon transverse momentum, pt, and pseudo-rapidity, eta. The
mean number of Lambda, Xi- and Xi*(1530) baryons per hadronic two-photon event
is determined in the kinematic range 0.4 GeV < pt< 2.5 GeV, |eta| < 1.2.
Overall agreement with the theoretical models and Monte Carlo predictions is
observed. A search for inclusive production of the pentaquark theta+(1540) in
two-photon collisions through the decay theta+ -> proton K0s is also presented.
No evidence for production of this state is found
Deconstructing classical water models at interfaces and in bulk
Using concepts from perturbation and local molecular field theories of
liquids we divide the potential of the SPC/E water model into short and long
ranged parts. The short ranged parts define a minimal reference network model
that captures very well the structure of the local hydrogen bond network in
bulk water while ignoring effects of the remaining long ranged interactions.
This deconstruction can provide insight into the different roles that the local
hydrogen bond network, dispersion forces, and long ranged dipolar interactions
play in determining a variety of properties of SPC/E and related classical
models of water. Here we focus on the anomalous behavior of the internal
pressure and the temperature dependence of the density of bulk water. We
further utilize these short ranged models along with local molecular field
theory to quantify the influence of these interactions on the structure of
hydrophobic interfaces and the crossover from small to large scale hydration
behavior. The implications of our findings for theories of hydrophobicity and
possible refinements of classical water models are also discussed
Galaxy Clusters Associated with Short GRBs. II. Predictions for the Rate of Short GRBs in Field and Cluster Early-Type Galaxies
We determine the relative rates of short GRBs in cluster and field early-type
galaxies as a function of the age probability distribution of their
progenitors, P(\tau) \propto \tau^n. This analysis takes advantage of the
difference in the growth of stellar mass in clusters and in the field, which
arises from the combined effects of the galaxy stellar mass function, the
early-type fraction, and the dependence of star formation history on mass and
environment. This approach complements the use of the early- to late-type host
galaxy ratio, with the added benefit that the star formation histories of
early-type galaxies are simpler than those of late-type galaxies, and any
systematic differences between progenitors in early- and late-type galaxies are
removed. We find that the ratio varies from R(cluster)/R(field) ~ 0.5 for n =
-2 to ~ 3 for n = 2. Current observations indicate a ratio of about 2,
corresponding to n ~ 0 - 1. This is similar to the value inferred from the
ratio of short GRBs in early- and late-type hosts, but it differs from the
value of n ~ -1 for NS binaries in the Milky Way. We stress that this general
approach can be easily modified with improved knowledge of the effects of
environment and mass on the build-up of stellar mass, as well as the effect of
globular clusters on the short GRB rate. It can also be used to assess the age
distribution of Type Ia supernova progenitors.Comment: ApJ accepted versio
A measurement of the Z0 leptonic partial widths and the vector and axial vector coupling constants
We have measured the partial widths of the Z0 into lepton pairs, and the forward-backward charge asymmetry for the process e+e--->[mu]+[mu]- using the L3 detector at LEP. We obtain an average [Gamma]ll of 83.0+/-2.1+/-1.1 MeV.From this result and the asymmetry measurement, we extract the values of the vector and axial vector couplings of the Z0 to leptons: grmv=-0.066-0.027+0.046 and grmA= -0.495-0.007+0.007.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/28666/3/0000483.pd
Measurement of Z0 decays to hadrons, and a precise determination of the number of neutrino species
We have made a precise measurement of the cross section for e+e--->Z0-->hadrons with the L3 detector at LEP, covering the range from 88.28 to 95.04 GeV. From a fit to the Z0 mass, total width, and the hadronic cross section to be MZ0=91.160 +/- 0.024 (experiment) +/-0.030(LEP) GeV, [Gamma]Z0=2.539+/-0.054 GeV, and [sigma]h(MZ0)=29.5+/-0.7 nb. We also used the fit to the Z0 peak cross section and the width todetermine [Gamma]invisible=0.548+/-0.029 GeV, which corresponds to 3.29+/-0.17 species of light neutrinos. The possibility of four or more neutrino flavors is thus ruled out at the 4[sigma] confidence level.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/28683/3/0000500.pd
Search for gravitational-wave transients associated with magnetar bursts in advanced LIGO and advanced Virgo data from the third observing run
Gravitational waves are expected to be produced from neutron star oscillations associated with magnetar giant f lares and short bursts. We present the results of a search for short-duration (milliseconds to seconds) and longduration (∼100 s) transient gravitational waves from 13 magnetar short bursts observed during Advanced LIGO, Advanced Virgo, and KAGRA’s third observation run. These 13 bursts come from two magnetars, SGR1935 +2154 and SwiftJ1818.0−1607. We also include three other electromagnetic burst events detected by FermiGBM which were identified as likely coming from one or more magnetars, but they have no association with a known magnetar. No magnetar giant flares were detected during the analysis period. We find no evidence of gravitational waves associated with any of these 16 bursts. We place upper limits on the rms of the integrated incident gravitational-wave strain that reach 3.6 × 10−²³ Hz at 100 Hz for the short-duration search and 1.1 ×10−²² Hz at 450 Hz for the long-duration search. For a ringdown signal at 1590 Hz targeted by the short-duration search the limit is set to 2.3 × 10−²² Hz. Using the estimated distance to each magnetar, we derive upper limits upper limits on the emitted gravitational-wave energy of 1.5 × 1044 erg (1.0 × 1044 erg) for SGR 1935+2154 and 9.4 × 10^43 erg (1.3 × 1044 erg) for Swift J1818.0−1607, for the short-duration (long-duration) search. Assuming isotropic emission of electromagnetic radiation of the burst fluences, we constrain the ratio of gravitational-wave energy to electromagnetic energy for bursts from SGR 1935+2154 with the available fluence information. The lowest of these ratios is 4.5 × 103
- …
