34 research outputs found

    Photoacclimation by arctic cryoconite phototrophs

    Get PDF
    © FEMS 2017. All rights reserved. Cryoconite is a matrix of sediment, biogenic polymer and a microbial community that resides on glacier surfaces. The phototrophic component of this community is well adapted to this extreme environment, including high light stress. Photoacclimation of the cryoconite phototrophic community on Longyearbreen, Svalbard, was investigated using in situ variable chlorophyll fluorescence. Rapid light curves (RLCs) and induction-recovery curves were used to analyse photosystem II quantum efficiency, relative electron transport rate and forms of downregulation including non-photochemical quenching (NPQ) and state transitions in cyanobacteria. Phototrophs used a combination of behavioural and physiological photochemical downregulation. Behavioural downregulation is hypothesised to incorporate chloroplast movement and cell or filament positioning within the sediment matrix in order to shade from high light, which resulted in a lack of saturation of RLCs and hence overestimation of productivity. Physiological downregulation likely consisted of biphasic NPQ, comprising a steadily induced light-dependent form and a light-independent NPQ that was not reversed with decreasing light intensity. State transitions by cyanobacteria were the most likely physiological downregulation employed by cyanobacteria within the mixed phototroph community. These findings demonstrate that cryoconite phototrophs combine multiple forms of physiological and behavioural downregulation to optimise light exposure and maximise photosynthetic productivity. This plasticity of photoacclimation enables them to survive productively in the high-light stress environment on the ice surface

    Exploring a range of UK seaweed species for the production of fuels and fertiliser

    Get PDF
    Displacing crude oil in the fuel industry is vital for ensuring global energy security. Hydrothermal liquefaction (HTL) of macroalgae has been shown to generate bio-crude oils that can potentially be co-refined with mineral crude, or upgraded to hydrocarbon biofuels. HTL utilises water as one of the reactants, and produces four clear product phases which all have economic value and could potentially be used as a basis for a future biorefinery. Alongside the bio-crude oil, these comprise a gas phase (predominantly CO2), a solid residue containing carbon and most of the inorganic material, and a water phase. This contains a range of dissolved elements, including K, Mg, N and P, which are all classed as vital macronutrients for plant growth. The distribution of elements in each of the four phases is highly susceptible to the HTL operating conditions.This project aims to examine a range UK-based macroalgae species to identify a suitable feedstock for a UK HTL biorefinery. HTL reaction conditions were optimised to give maximised bio-crude yields using the brown macroalga Ascophyllum nodosum. Aqueous phase macronutrient content was also considered, with a view to utilise the aqueous phase as an industrial fertiliser. A range of South West UK macroalgae species (belonging to all three major macroalgae classes: green, brown and red) were subsequently screened, with energy and nutrient balances carried out.Ultimately, a biorefinery design incorporating macroalgae cultivation, harvesting and processing will be finalised, and a Life Cycle Assessment (LCA) carried out to quantify the system’s overall environmental impact

    Effect of Formulation Variables on the Stability of a Live, Rotavirus (RV3-BB) Vaccine Candidate using in vitro Gastric Digestion Models to Mimic Oral Delivery

    Get PDF
    In this work, two different in vitro gastric digestion models were used to evaluate the stability of a live attenuated rotavirus vaccine candidate (RV3-BB) under conditions designed to mimic oral delivery in infants. First, a forced-degradation model was established at low pH to assess the buffering capacity of formulation excipients and to screen for RV3-BB stabilizers. Second, a sequential-addition model was implemented to examine RV3-BB stability under conditions more representative of oral administration to infants. RV3-BB rapidly inactivated at < pH 5.0 (37 °C, 1 h) as measured by an infectivity RT-qPCR assay. Pre-neutralization with varying volumes of infant formula (Enfamil®) or antacid (Mylanta®) conferred partial to full protection of RV3-BB. Excipients with sufficient buffering capacity to minimize acidic pH inactivation of RV3-BB were identified (e.g., succinate, acetate, adipate), however, they concomitantly destabilized RV3-BB in accelerated storage stability studies. Both effects were concentration dependent, thus excipient optimization was required to design candidate RV3-BB formulations which minimize acid-induced viral inactivation during oral delivery while not destabilizing the vaccine during long-term 2–8 °C storage. Finally, a statistical Design -of-Experiments (DOE) study examining RV3-BB stability in the in vitro sequential-addition model identified key formulation parameters likely affecting RV3-BB stability during in vivo oral delivery

    Formulation development of a live attenuated human rotavirus (RV3-BB) vaccine candidate for use in low- and middle-income countries

    Get PDF
    Formulation development was performed with the live, attenuated, human neonatal rotavirus vaccine candidate (RV3-BB) with three main objectives to facilitate use in low- and middle- income countries including (1) a liquid, 2–8°C stable vaccine, (2) no necessity for pre-neutralization of gastric acid prior to oral administration of a small-volume dose, and (3) a low-cost vaccine dosage form. Implementation of a high-throughput RT-qPCR viral infectivity assay for RV3-BB, which correlated well with traditional FFA assays in terms of monitoring RV3-BB stability profiles, enabled more rapid and comprehensive formulation development studies. A wide variety of different classes and types of pharmaceutical excipients were screened for their ability to stabilize RV3-BB during exposure to elevated temperatures, freeze-thaw and agitation stresses. Sucrose (50–60% w/v), PEG-3350, and a solution pH of 7.8 were selected as promising stabilizers. Using a combination of an in vitro gastric digestion model (to mimic oral delivery conditions) and accelerated storage stability studies, several buffering agents (e.g., succinate, adipate and acetate at ~200 to 400 mM) were shown to protect RV3-BB under acidic conditions, and at the same time, minimize virus destabilization during storage. Several optimized RV3-BB candidate formulations were identified based on negligible viral infectivity losses during storage at 2–8°C and −20°C for up to 12 months, as well as by relative stability comparisons at 15°C and 25°C (up to 12 and 3 months, respectively). These RV3-BB stability results are discussed in the context of stability profiles of other rotavirus serotypes as well as future RV3-BB formulation development activities

    Algal photophysiology drives darkening and melt of the Greenland Ice Sheet

    Get PDF
    Blooms of Zygnematophycean “glacier algae” lower the bare ice albedo of the Greenland Ice Sheet (GrIS), amplifying summer energy absorption at the ice surface and enhancing meltwater runoff from the largest cryospheric contributor to contemporary sea-level rise. Here, we provide a step change in current understanding of algal-driven ice sheet darkening through quantification of the photophysiological mechanisms that allow glacier algae to thrive on and darken the bare ice surface. Significant secondary phenolic pigmentation (11 times the cellular content of chlorophyll a) enables glacier algae to tolerate extreme irradiance (up to ∼4,000 µmol photons⋅m−2⋅s−1) while simultaneously repurposing captured ultraviolet and short-wave radiation for melt generation. Total cellular energy absorption is increased 50-fold by phenolic pigmentation, while glacier algal chloroplasts positioned beneath shading pigments remain low-light–adapted (Ek ∼46 µmol photons⋅m−2⋅s−1) and dependent upon typical nonphotochemical quenching mechanisms for photoregulation. On the GrIS, glacier algae direct only ∼1 to 2.4% of incident energy to photochemistry versus 48 to 65% to ice surface melting, contributing an additional ∼1.86 cm water equivalent surface melt per day in patches of high algal abundance (∼104 cells⋅mL−1). At the regional scale, surface darkening is driven by the direct and indirect impacts of glacier algae on ice albedo, with a significant negative relationship between broadband albedo (Moderate Resolution Imaging Spectroradiometer [MODIS]) and glacier algal biomass (R2 = 0.75, n = 149), indicating that up to 75% of the variability in albedo across the southwestern GrIS may be attributable to the presence of glacier algae

    Developing a manufacturing process to deliver a cost effective and stable liquid human rotavirus vaccine

    Get PDF
    Despite solid evidence of the success of rotavirus vaccines in saving children from fatal gastroenteritis, more than 82 million infants worldwide still lack access to a rotavirus vaccine. The main barriers to global rotavirus vaccine coverage include cost, manufacturing capacity and suboptimal efficacy in low- and lower-middle income countries. One vaccine candidate with the potential to address the latter is based on the novel, naturally attenuated RV3 strain of rotavirus, RV3-BB vaccine administered in a birth dose strategy had a vaccine efficacy against severe rotavirus gastroenteritis of 94% at 12 months of age in infants in Indonesia. To further develop this vaccine candidate, a well-documented and low-cost manufacturing process is required. A target fully loaded cost of goods (COGs) of ≤3.50percourseofthreedoseswassetbasedonpredictedmarketrequirements.COGsmodellingwasleveragedtodevelopaprocessusingVerocellsincellfactoriesreachinghightiters,reducingorreplacingexpensivereagentsandshorteningprocesstimetomaximiseoutput.Stablecandidateliquidformulationsweredevelopedallowingtwoyearstorageat28°C.Inaddition,theformulationpotentiallyrendersneedlessthepretreatmentofvaccineeswithantacidtoensureadequategastricacidneutralizationforroutineoralvaccination.Asaresult,theformulationallowssmallvolumedosingandreductionofsupplychaincosts.AdoserangingstudyiscurrentlyunderwayinMalawithatwillinformthefinalclinicaldoserequired.Ataclinicaldoseof6.3log10FFU,theCOGstargetof3.50 per course of three doses was set based on predicted market requirements. COGs modelling was leveraged to develop a process using Vero cells in cell factories reaching high titers, reducing or replacing expensive reagents and shortening process time to maximise output. Stable candidate liquid formulations were developed allowing two-year storage at 2–8 °C. In addition, the formulation potentially renders needless the pretreatment of vaccinees with antacid to ensure adequate gastric acid neutralization for routine oral vaccination. As a result, the formulation allows small volume dosing and reduction of supply chain costs. A dose ranging study is currently underway in Malawi that will inform the final clinical dose required. At a clinical dose of ≤6.3 log10 FFU, the COGs target of ≤3.50 per three dose course was met. At a clinical dose of 6.5 log10 FFU, the final manufacturing process resulted in a COGs that is substantially lower than the current average market price, 2.44 USD per dose. The manufacturing and formulation processes were transferred to BioFarma in Indonesia to enable future RV3-BB vaccine production

    Induction therapy with the MATRix regimen in patients with newly diagnosed primary diffuse large B-cell lymphoma of the central nervous system - an international study of feasibility and efficacy in routine clinical practice

    Get PDF
    The MATRix chemoimmunotherapy regimen is highly effective in patients with newly diagnosed primary diffuse large B-cell lymphoma of the central nervous system (PCNSL). However, nothing is known about its feasibility and efficacy in everyday practice, where patients are more often older/frailer than those enrolled in clinical trials. We conducted a retrospective study addressing tolerability/efficacy of MATRix in 156 consecutive patients with newly diagnosed PCNSL treated outside a clinical trial. Median age and ECOG Performance Status of considered patients were 62 years (range 28–78) and 2 (range 0–4). The overall response rate after MATRix was 79%. Nine (6%) treatment-related deaths were recorded. After a median follow-up of 27.4 months (95% confidence interval [CI] 24.4–31.9%), the two-year progression-free and overall survival were 56% (95% CI 48.4–64.9%) and 64.1% (95% CI 56.7–72.5%) respectively. Patients not eligible for the IELSG32 trial were treated with lower dose intensity and had substantially worse outcomes than those fulfilling inclusion criteria. This is the largest series of PCNSL patients treated with MATRix outside a trial and recapitulates the IELSG32 trial outcomes in the non-trial setting for patients who fit the trial criteria. These data underscore the feasibility and efficacy of MATRix as induction treatment for fit patients in routine practice

    Glacier algae accelerate melt rates on the south-western Greenland Ice Sheet

    Get PDF
    Melting of the Greenland Ice Sheet (GrIS) is the largest single contributor to eustatic sea level and is amplified by the growth of pigmented algae on the ice surface, which increases solar radiation absorption. This biological albedo-reducing effect and its impact upon sea level rise has not previously been quantified. Here, we combine field spectroscopy with a radiative-transfer model, supervised classification of unmanned aerial vehicle (UAV) and satellite remote-sensing data, and runoff modelling to calculate biologically driven ice surface ablation. We demonstrate that algal growth led to an additional 4.4–6.0 Gt of runoff from bare ice in the south-western sector of the GrIS in summer 2017, representing 10 %–13 % of the total. In localized patches with high biomass accumulation, algae accelerated melting by up to 26.15±3.77 % (standard error, SE). The year 2017 was a high-albedo year, so we also extended our analysis to the particularly low-albedo 2016 melt season. The runoff from the south-western bare-ice zone attributed to algae was much higher in 2016 at 8.8–12.2 Gt, although the proportion of the total runoff contributed by algae was similar at 9 %–13 %. Across a 10 000 km2 area around our field site, algae covered similar proportions of the exposed bare ice zone in both years (57.99 % in 2016 and 58.89 % in 2017), but more of the algal ice was classed as “high biomass” in 2016 (8.35 %) than 2017 (2.54 %). This interannual comparison demonstrates a positive feedback where more widespread, higher-biomass algal blooms are expected to form in high-melt years where the winter snowpack retreats further and earlier, providing a larger area for bloom development and also enhancing the provision of nutrients and liquid water liberated from melting ice. Our analysis confirms the importance of this biological albedo feedback and that its omission from predictive models leads to the systematic underestimation of Greenland's future sea level contribution, especially because both the bare-ice zones available for algal colonization and the length of the biological growth season are set to expand in the future

    The Arctic in the twenty-first century: changing biogeochemical linkages across a paraglacial landscape of Greenland

    Get PDF
    The Kangerlussuaq area of southwest Greenland encompasses diverse ecological, geomorphic, and climate gradients that function over a range of spatial and temporal scales. Ecosystems range from the microbial communities on the ice sheet and moisture-stressed terrestrial vegetation (and their associated herbivores) to freshwater and oligosaline lakes. These ecosystems are linked by a dynamic glacio-fluvial-aeolian geomorphic system that transports water, geological material, organic carbon and nutrients from the glacier surface to adjacent terrestrial and aquatic systems. This paraglacial system is now subject to substantial change because of rapid regional warming since 2000. Here, we describe changes in the eco- and geomorphic systems at a range of timescales and explore rapid future change in the links that integrate these systems. We highlight the importance of cross-system subsidies at the landscape scale and, importantly, how these might change in the near future as the Arctic is expected to continue to warm
    corecore