82 research outputs found

    Comparison of Rooting Strategies to Explore Rock Fractures for Shallow Soil-Adapted Tree Species with Contrasting Aboveground Growth Rates: A Greenhouse Microcosm Experiment

    Get PDF
    For tree species adapted to shallow soil environments, rooting strategies that efficiently explore rock fractures are important because soil water depletion occurs frequently. However, two questions: (a) to what extent shallow soil-adapted species rely on exploring rock fractures and (b) what outcomes result from drought stress, have rarely been tested. Therefore, based on the expectation that early development of roots into deep soil layers is at the cost of aboveground growth, seedlings of three tree species (Cyclobalanopsis glauca, Delavaya toxocarpa, and Acer cinnamomifolium) with distinct aboveground growth rates were selected from a typical shallow soil region. In a greenhouse experiment that mimics the basic features of shallow soil environments, 1-year-old seedlings were transplanted into simulated microcosms of shallow soil overlaying fractured bedrock. Root biomass allocation and leaf physiological activities, as well as leaf δ13C values were investigated and compared for two treatments: regular irrigation and repeated cycles of drought stress. Our results show that the three species differed in their rooting strategies in the context of encountering rock fractures, however, these strategies were not closely related to the aboveground growth rate. For the slowest-growing seedling, C. glauca, percentages of root mass in the fractures, as well as in the soil layer between soil and bedrock increased significantly under both treatments, indicating a specialized rooting strategy that facilitated the exploration of rock fractures. Early investment in deep root growth was likely critical to the establishment of this drought-vulnerable species. For the intermediate-growing, A. cinnamomifolium, percentages of root mass in the bedrock and interface soil layers were relatively low and exhibited no obvious change under either treatment. This limited need to explore rock fractures was compensated by a conservative water use strategy. For the fast-growing, D. toxocarpa, percentages of root mass in the bedrock and interface layers increased simultaneously under drought conditions, but not under irrigated conditions. This drought-induced rooting plasticity was associated with drought avoidance by this species. Although, root development might have been affected by the simulated microcosm, contrasting results among the three species indicated that efficient use of rock fractures is not a necessary or specialized strategy of shallow-soil adapted species. The establishment and persistence of these species relied on the mutual complementation between their species-specific rooting strategies and drought adaptations

    High-free Fatty Acid Treatment Induced Anti-inflammatory Changes in a Natural Killer (NK) Cell Line

    Get PDF
    Background: Natural killer (NK) cells play a role in the pathogenesis of various metabolic diseases related to obesity. While our initial findings have indicated a potential involvement of NK cells in the pathogenesis of type 2 diabetes mellitus, the precise mechanism underlying NK cell-mediated development of this form of diabetes remains inadequately comprehended.Objective: To investigate the impact and the underlying mechanism of high glucose and elevated levels of free fatty acids (FFAs) on immune and inflammatory responses and oxidative stress in NK92 cells.Methods: In this experiment, the CCK8 cytotoxicity assay was used to select the 44.4 mM and 1.5 mM concentrations of high glucose and high FFAs, respectively, to treat NK92 cells for 4 days. The concentrations of superoxide dismutase (SOD) and glutathione (GSH) were determined using a biochemical analyzer. Intracellular reactive oxygen species (ROS) levels, cytokines concentrations (TNF-α, IFN-γ, IL-6, and IL-10), and the expression levels of intracellular molecules (perforin and granzyme B) were assessed by flow cytometry.Results: The number of NK92 cell clumps was significantly reduced in the high-FFA (HF) group. In addition, the production of ROS and levels of cytokines (TNF-α, IFN-γ, IL-6, and IL-10) significantly decreased in the HF group but showed no significant change in the high-glucose (HG) group. This observation was consistent with the expression levels of perforin and granzyme B that decreased in the HF group.Conclusion: High FFAs induced morphological changes and serious damage to oxidative stress and inflammatory response in NK92 cells

    The First Data Release of the Beijing-Arizona Sky Survey

    Full text link
    The Beijing-Arizona Sky Survey (BASS) is a new wide-field legacy imaging survey in the northern Galactic cap using the 2.3m Bok telescope. The survey will cover about 5400 deg2^2 in the gg and rr bands, and the expected 5σ\sigma depths (corrected for the Galactic extinction) in the two bands are 24.0 and 23.4 mag, respectively. BASS started observations in January 2015, and has completed about 41% of the whole area as of July 2016. The first data release contains both calibrated images and photometric catalogs obtained in 2015 and 2016. The depths of single-epoch images in the two bands are 23.4 and 22.9 mag, and the full depths of three epochs are about 24.1 and 23.5 mag, respectively.Comment: 16 pages, published by A

    A novel method for maize leaf disease classification using the RGB-D post-segmentation image data

    Get PDF
    Maize (Zea mays L.) is one of the most important crops, influencing food production and even the whole industry. In recent years, global crop production has been facing great challenges from diseases. However, most of the traditional methods make it difficult to efficiently identify disease-related phenotypes in germplasm resources, especially in actual field environments. To overcome this limitation, our study aims to evaluate the potential of the multi-sensor synchronized RGB-D camera with depth information for maize leaf disease classification. We distinguished maize leaves from the background based on the RGB-D depth information to eliminate interference from complex field environments. Four deep learning models (i.e., Resnet50, MobilenetV2, Vgg16, and Efficientnet-B3) were used to classify three main types of maize diseases, i.e., the curvularia leaf spot [Curvularia lunata (Wakker) Boedijn], the small spot [Bipolaris maydis (Nishik.) Shoemaker], and the mixed spot diseases. We finally compared the pre-segmentation and post-segmentation results to test the robustness of the above models. Our main findings are: 1) The maize disease classification models based on the pre-segmentation image data performed slightly better than the ones based on the post-segmentation image data. 2) The pre-segmentation models overestimated the accuracy of disease classification due to the complexity of the background, but post-segmentation models focusing on leaf disease features provided more practical results with shorter prediction times. 3) Among the post-segmentation models, the Resnet50 and MobilenetV2 models showed similar accuracy and were better than the Vgg16 and Efficientnet-B3 models, and the MobilenetV2 model performed better than the other three models in terms of the size and the single image prediction time. Overall, this study provides a novel method for maize leaf disease classification using the post-segmentation image data from a multi-sensor synchronized RGB-D camera and offers the possibility of developing relevant portable devices

    A global analysis of Y-chromosomal haplotype diversity for 23 STR loci

    Get PDF
    In a worldwide collaborative effort, 19,630 Y-chromosomes were sampled from 129 different populations in 51 countries. These chromosomes were typed for 23 short-tandem repeat (STR) loci (DYS19, DYS389I, DYS389II, DYS390, DYS391, DYS392, DYS393, DYS385ab, DYS437, DYS438, DYS439, DYS448, DYS456, DYS458, DYS635, GATAH4, DYS481, DYS533, DYS549, DYS570, DYS576, and DYS643) and using the PowerPlex Y23 System (PPY23, Promega Corporation, Madison, WI). Locus-specific allelic spectra of these markers were determined and a consistently high level of allelic diversity was observed. A considerable number of null, duplicate and off-ladder alleles were revealed. Standard single-locus and haplotype-based parameters were calculated and compared between subsets of Y-STR markers established for forensic casework. The PPY23 marker set provides substantially stronger discriminatory power than other available kits but at the same time reveals the same general patterns of population structure as other marker sets. A strong correlation was observed between the number of Y-STRs included in a marker set and some of the forensic parameters under study. Interestingly a weak but consistent trend toward smaller genetic distances resulting from larger numbers of markers became apparent.Peer reviewe
    corecore