13 research outputs found

    Efficiency of Organelle Capture by Microtubules as a Function of Centrosome Nucleation Capacity: General Theory and the Special Case of Polyspermia

    Get PDF
    Transport of organelles along microtubules is essential for the cell metabolism and morphogenesis. The presented analysis derives the probability that an organelle of a given size comes in contact with the microtubule aster. The question is asked how this measure of functionality of the microtubule aster is controlled by the centrosome. A quantitative model is developed to address this question. It is shown that for the given set of cellular parameters, such as size and total tubulin content, a centrosome nucleation capacity exists that maximizes the probability of the organelle capture. The developed general model is then applied to the capture of the female pronucleus by microtubules assembled on the sperm centrosome, following physiologically polyspermic fertilization. This application highlights an unintuitive reflection of nonlinearity of the nucleated polymerization of the cellular pool of tubulin. The prediction that the sperm centrosome should lower its nucleation capacity in the face of the competition from the other sperm is a stark illustration of the new optimality principle. Overall, the model calls attention to the capabilities of the centrosomal pathway of regulation of the transport-related functionality of the microtubule cytoskeleton. It establishes a quantitative and conceptual framework that can guide experiment design and interpretation

    The pseudogap in high-temperature superconductors: an experimental survey

    Full text link
    We present an experimental review of the nature of the pseudogap in the cuprate superconductors. Evidence from various experimental techniques points to a common phenomenology. The pseudogap is seen in all high temperature superconductors and there is general agreement on the temperature and doping range where it exists. It is also becoming clear that the superconducting gap emerges from the normal state pseudogap. The d-wave nature of the order parameter holds for both the superconducting gap and the pseudogap. Although an extensive body of evidence is reviewed, a consensus on the origin of the pseudogap is as lacking as it is for the mechanism underlying high temperature superconductivity.Comment: review article, 54 pages, 50 figure

    Etk/Bmx Regulates Proteinase-Activated-Receptor1 (PAR1) in Breast Cancer Invasion: Signaling Partners, Hierarchy and Physiological Significance

    Get PDF
    BACKGROUND: While protease-activated-receptor 1 (PAR(1)) plays a central role in tumor progression, little is known about the cell signaling involved. METHODOLOGY/PRINCIPAL FINDINGS: We show here the impact of PAR(1) cellular activities using both an orthotopic mouse mammary xenograft and a colorectal-liver metastasis model in vivo, with biochemical analyses in vitro. Large and highly vascularized tumors were generated by cells over-expressing wt hPar1, Y397Z hPar1, with persistent signaling, or Y381A hPar1 mutant constructs. In contrast, cells over-expressing the truncated form of hPar1, which lacks the cytoplasmic tail, developed small or no tumors, similar to cells expressing empty vector or control untreated cells. Antibody array membranes revealed essential hPar1 partners including Etk/Bmx and Shc. PAR(1) activation induces Etk/Bmx and Shc binding to the receptor C-tail to form a complex. Y/A mutations in the PAR(1) C-tail did not prevent Shc-PAR(1) association, but enhanced the number of liver metastases compared with the already increased metastases obtained with wt hPar1. We found that Etk/Bmx first binds via the PH domain to a region of seven residues, located between C378-S384 in PAR(1) C-tail, enabling subsequent Shc association. Importantly, expression of the hPar1-7A mutant form (substituted A, residues 378-384), which is incapable of binding Etk/Bmx, resulted in inhibition of invasion through Matrigel-coated membranes. Similarly, knocking down Etk/Bmx inhibited PAR(1)-induced MDA-MB-435 cell migration. In addition, intact spheroid morphogenesis of MCF10A cells is markedly disrupted by the ectopic expression of wt hPar1. In contrast, the forced expression of the hPar1-7A mutant results in normal ball-shaped spheroids. Thus, by preventing binding of Etk/Bmx to PAR(1) -C-tail, hPar1 oncogenic properties are abrogated. CONCLUSIONS/SIGNIFICANCE: This is the first demonstration that a cytoplasmic portion of the PAR(1) C-tail functions as a scaffold site. We identify here essential signaling partners, determine the hierarchy of binding and provide a platform for therapeutic vehicles via definition of the critical PAR(1)-associating region in the breast cancer signaling niche

    Birds of a feather? Peers, delinquency, and risk

    No full text
    “Association with delinquent peers is a risk factor for youth violence.” This statement, taken for granted in much social science and policy discourse, frames a social problem as a result of transgressive behavior by individuals (Douglas 1966, 1992). In this paper, I interrogate “delinquent peers,” “risk factor,” and “youth violence” in order to understand how these concepts shift our gaze from the distribution of power to the choices of individuals. One of Douglas’ contributions is that not all dangers get attention. By attending to the danger of interpersonal violence, these terms reduce the complexity of lived experience for those youth who face state, symbolic, and interpersonal violence. This paper is based on interviews with thirty-eight young adults about their experiences from ages 13-24 in a low-income neighborhood of Oakland, California. In the year 2000, the population of the neighborhood was approximately one-third Asian American, one-third Latino, 20% African American and 20% white. Over half the population was foreign-born. The young adults who have succeeded academically and obtained jobs maintain friendships with peers of different ethnic backgrounds and also with those who have varying life experiences (for example those who are in a gang, those who are pursuing higher education, and so forth). For these young people, “delinquent peers” help them move through their neighborhood safely and help them feel anchored to their community even when they seem poised to leave it by attending college. Growing up in a site of global capital accumulation and disinvestment in the era of neoliberalism, they challenge us to re-examine risk

    Nuclear Data Sheets for A=188

    No full text
    corecore