484 research outputs found

    Iterative discriminant tensor factorization for behavior comparison in massive open online courses

    Get PDF
    The increasing utilization of massive open online courses has significantly expanded global access to formal education. Despite the technology's promising future, student interaction on MOOCs is still a relatively under-explored and poorly understood topic. This work proposes a multi-level pattern discovery through hierarchical discriminative tensor factorization. We formulate the problem as a hierarchical discriminant subspace learning problem, where the goal is to discover the shared and discriminative patterns with a hierarchical structure. The discovered patterns enable a more effective exploration of the contrasting behaviors of two performance groups. We conduct extensive experiments on several real-world MOOC datasets to demonstrate the effectiveness of our proposed approach. Our study advances the current predictive modeling in MOOCs by providing more interpretable behavioral patterns and linking their relationships with the performance outcome

    Toll-like receptor signaling adapter proteins govern spread of neuropathic pain and recovery following nerve injury in male mice.

    Get PDF
    BackgroundSpinal Toll-like receptors (TLRs) and signaling intermediaries have been implicated in persistent pain states. We examined the roles of two major TLR signaling pathways and selected TLRs in a mononeuropathic allodynia.MethodsL5 spinal nerve ligation (SNL) was performed in wild type (WT, C57BL/6) male and female mice and in male Tlr2-/-Tlr3-/-, Tlr4-/-, Tlr5-/-, Myd88-/-, Triflps2, Myd88/Triflps2, Tnf-/-, and Ifnar1-/- mice. We also examined L5 ligation in Tlr4-/- female mice. We examined tactile allodynia using von Frey hairs. Iba-1 (microglia) and GFAP (astrocytes) were assessed in spinal cords by immunostaining. Tactile thresholds were analyzed by 1- and 2-way ANOVA and the Bonferroni post hoc test was used.ResultsIn WT male and female mice, SNL lesions resulted in a persistent and robust ipsilateral, tactile allodynia. In males with TLR2, 3, 4, or 5 deficiencies, tactile allodynia was significantly, but incompletely, reversed (approximately 50%) as compared to WT. This effect was not seen in female Tlr4-/- mice. Increases in ipsilateral lumbar Iba-1 and GFAP were seen in mutant and WT mice. Mice deficient in MyD88, or MyD88 and TRIF, showed an approximately 50% reduction in withdrawal thresholds and reduced ipsilateral Iba-1. In contrast, TRIF and interferon receptor null mice developed a profound ipsilateral and contralateral tactile allodynia. In lumbar sections of the spinal cords, we observed a greater increase in Iba-1 immunoreactivity in the TRIF-signaling deficient mice as compared to WT, but no significant increase in GFAP. Removing MyD88 abrogated the contralateral allodynia in the TRIF signaling-deficient mice. Conversely, IFNÎČ, released downstream to TRIF signaling, administered intrathecally, temporarily reversed the tactile allodynia.ConclusionsThese observations suggest a critical role for the MyD88 pathway in initiating neuropathic pain, but a distinct role for the TRIF pathway and interferon in regulating neuropathic pain phenotypes in male mice

    Association between Low Density Lipoprotein Receptor-Related Protein 2 Gene Polymorphisms and Bone Mineral Density Variation in Chinese Population

    Get PDF
    Low density lipoprotein receptor-related protein 2 gene (LRP2) is located next to the genomic region showing suggestive linkage with both hip and wrist bone mineral density (BMD) phenotypes. LRP2 knockout mice showed severe vitamin D deficiency and bone disease, indicating the involvement of LRP2 in the preservation of vitamin D metabolites and delivery of the precursor to the kidney for the generation of 1α,25(OH)2D3. In order to investigate the contribution of LRP2 gene polymorphisms to the variation of BMD in Chinese population, a total of 330 Chinese female-offspring nuclear families with 1088 individuals and 400 Chinese male-offspring nuclear families with 1215 individuals were genotyped at six tagSNPs of the LRP2 gene (rs2389557, rs2544381, rs7600336, rs10210408, rs2075252 and rs4667591). BMD values at the lumbar spine 1–4 (L1-4) and hip sites were measured by DXA. The association between LRP2 polymorphisms and BMD phenotypes was assessed by quantitative transmission disequilibrium tests (QTDTs) in female- and male-offspring nuclear families separately. In the female-offspring nuclear families, rs2075252 and haplotype GA of rs4667591 and rs2075252 were identified in the nominally significant total association with peak BMD at L1-4; however, no significant within-family association was found between peak BMD at the L1-4 and hip sites and six tagSNPs or haplotypes. In male-offspring nuclear families, neither the six tagSNPs nor the haplotypes was in total association or within-family association with the peak BMD variation at the L1-4 and hip sites by QTDT analysis. Our findings suggested that the polymorphisms of LRP2 gene is not a major factor that contributes to the peak BMD variation in Chinese population

    Abnormal increase in urinary aquaporin-2 excretion in response to hypertonic saline in essential hypertension

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dysregulation of the expression/shuttling of the aquaporin-2 water channel (AQP2) and the epithelial sodium channel (ENaC) in renal collecting duct principal cells has been found in animal models of hypertension. We tested whether a similar dysregulation exists in essential hypertension.</p> <p>Methods</p> <p>We measured urinary excretion of AQP2 and ENaC ÎČ-subunit corrected for creatinine (u-AQP2<sub>CR</sub>, u-ENaC<sub>ÎČ-CR</sub>), prostaglandin E2 (u-PGE<sub>2</sub>) and cyclic AMP (u-cAMP), fractional sodium excretion (FE<sub>Na</sub>), free water clearance (C<sub>H2O</sub>), as well as plasma concentrations of vasopressin (AVP), renin (PRC), angiotensin II (Ang II), aldosterone (Aldo), and atrial and brain natriuretic peptide (ANP, BNP) in 21 patients with essential hypertension and 20 normotensive controls during 24-h urine collection (baseline), and after hypertonic saline infusion on a 4-day high sodium (HS) diet (300 mmol sodium/day) and a 4-day low sodium (LS) diet (30 mmol sodium/day).</p> <p>Results</p> <p>At baseline, no differences in u-AQP2<sub>CR </sub>or u-ENaC<sub>ÎČ-CR </sub>were measured between patients and controls. U-AQP2<sub>CR </sub>increased significantly more after saline in patients than controls, whereas u-ENaC<sub>ÎČ-CR </sub>increased similarly. The saline caused exaggerated natriuretic increases in patients during HS intake. Neither baseline levels of u-PGE<sub>2</sub>, u-cAMP, AVP, PRC, Ang II, Aldo, ANP, and BNP nor changes after saline could explain the abnormal u-AQP2<sub>CR </sub>response.</p> <p>Conclusions</p> <p>No differences were found in u-AQP2<sub>CR </sub>and u-ENaC<sub>ÎČ-CR </sub>between patients and controls at baseline. However, in response to saline, u-AQP2<sub>CR </sub>was abnormally increased in patients, whereas the u-ENaC<sub>ÎČ-CR </sub>response was normal. The mechanism behind the abnormal AQP2 regulation is not clarified, but it does not seem to be AVP-dependent.</p> <p>Clinicaltrial.gov identifier</p> <p><a href="http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=00345124">NCT00345124</a>.</p

    Anti-Arthritic Effects of Magnolol in Human Interleukin 1ÎČ-Stimulated Fibroblast-Like Synoviocytes and in a Rat Arthritis Model

    Get PDF
    Fibroblast-like synoviocytes (FLS) play an important role in the pathologic processes of destructive arthritis by producing a number of catabolic cytokines and metalloproteinases (MMPs). The expression of these mediators is controlled at the transcriptional level. The purposes of this study were to evaluate the anti-arthritic effects of magnolol (5,5â€Č-Diallyl-biphenyl-2,2â€Č-diol), the major bioactive component of the bark of Magnolia officinalis, by examining its inhibitory effects on inflammatory mediator secretion and the NF-ÎșB and AP-1 activation pathways and to investigate its therapeutic effects on the development of arthritis in a rat model. The in vitro anti-arthritic activity of magnolol was tested on interleukin (IL)-1ÎČ-stimulated FLS by measuring levels of IL-6, cyclooxygenase-2, prostaglandin E2, and matrix metalloproteinases (MMPs) by ELISA and RT-PCR. Further studies on how magnolol inhibits IL-1ÎČ-stimulated cytokine expression were performed using Western blots, reporter gene assay, electrophoretic mobility shift assay, and confocal microscope analysis. The in vivo anti-arthritic effects of magnolol were evaluated in a Mycobacterium butyricum-induced arthritis model in rats. Magnolol markedly inhibited IL-1ÎČ (10 ng/mL)-induced cytokine expression in a concentration-dependent manner (2.5–25 ”g/mL). In clarifying the mechanisms involved, magnolol was found to inhibit the IL-1ÎČ-induced activation of the IKK/IÎșB/NF-ÎșB and MAPKs pathways by suppressing the nuclear translocation and DNA binding activity of both transcription factors. In the animal model, magnolol (100 mg/kg) significantly inhibited paw swelling and reduced serum cytokine levels. Our results demonstrate that magnolol inhibits the development of arthritis, suggesting that it might provide a new therapeutic approach to inflammatory arthritis diseases

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≄20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Amino-acid PET versus MRI guided re-irradiation in patients with recurrent glioblastoma multiforme (GLIAA) – protocol of a randomized phase II trial (NOA 10/ARO 2013-1)

    Get PDF
    Background: The higher specificity of amino-acid positron emission tomography (AA-PET) in the diagnosis of gliomas, as well as in the differentiation between recurrence and treatment-related alterations, in comparison to contrast enhancement in T1-weighted MRI was demonstrated in many studies and is the rationale for their implementation into radiation oncology treatment planning. Several clinical trials have demonstrated the significant differences between AA-PET and standard MRI concerning the definition of the gross tumor volume (GTV). A small single-center non-randomized prospective study in patients with recurrent high grade gliomas treated with stereotactic fractionated radiotherapy (SFRT) showed a significant improvement in survival when AA-PET was integrated in target volume delineation, in comparison to patients treated based on CT/MRI alone. Methods: This protocol describes a prospective, open label, randomized, multi-center phase II trial designed to test if radiotherapy target volume delineation based on FET-PET leads to improvement in progression free survival (PFS) in patients with recurrent glioblastoma (GBM) treated with re-irradiation, compared to target volume delineation based on T1Gd-MRI. The target sample size is 200 randomized patients with a 1:1 allocation ratio to both arms. The primary endpoint (PFS) is determined by serial MRI scans, supplemented by AA-PET-scans and/or biopsy/surgery if suspicious of progression. Secondary endpoints include overall survival (OS), locally controlled survival (time to local progression or death), volumetric assessment of GTV delineated by either method, topography of progression in relation to MRIor PET-derived target volumes, rate of long term survivors (> 1 year), localization of necrosis after re-irradiation, quality of life (QoL) assessed by the EORTC QLQ-C15 PAL questionnaire, evaluation of safety of FET-application in AA-PET imaging and toxicity of re-irradiation. Discussion: This is a protocol of a randomized phase II trial designed to test a new strategy of radiotherapy target volume delineation for improving the outcome of patients with recurrent GBM. Moreover, the trial will help to develop a standardized methodology for the integration of AA-PET and other imaging biomarkers in radiation treatment planning. Trial registration: The GLIAA trial is registered with ClinicalTrials.gov (NCT01252459, registration date 02.12.2010), German Clinical Trials Registry (DRKS00000634, registration date 10.10.2014), and European Clinical Trials Database (EudraCT-No. 2012-001121-27, registration date 27.02.2012)

    Novel Feature for Catalytic Protein Residues Reflecting Interactions with Other Residues

    Get PDF
    Owing to their potential for systematic analysis, complex networks have been widely used in proteomics. Representing a protein structure as a topology network provides novel insight into understanding protein folding mechanisms, stability and function. Here, we develop a new feature to reveal correlations between residues using a protein structure network. In an original attempt to quantify the effects of several key residues on catalytic residues, a power function was used to model interactions between residues. The results indicate that focusing on a few residues is a feasible approach to identifying catalytic residues. The spatial environment surrounding a catalytic residue was analyzed in a layered manner. We present evidence that correlation between residues is related to their distance apart most environmental parameters of the outer layer make a smaller contribution to prediction and ii catalytic residues tend to be located near key positions in enzyme folds. Feature analysis revealed satisfactory performance for our features, which were combined with several conventional features in a prediction model for catalytic residues using a comprehensive data set from the Catalytic Site Atlas. Values of 88.6 for sensitivity and 88.4 for specificity were obtained by 10fold crossvalidation. These results suggest that these features reveal the mutual dependence of residues and are promising for further study of structurefunction relationship
    • 

    corecore