303 research outputs found

    Fluctuating "Pulled" Fronts: the Origin and the Effects of a Finite Particle Cutoff

    Get PDF
    Recently it has been shown that when an equation that allows so-called pulled fronts in the mean-field limit is modelled with a stochastic model with a finite number NN of particles per correlation volume, the convergence to the speed vv^* for NN \to \infty is extremely slow -- going only as ln2N\ln^{-2}N. In this paper, we study the front propagation in a simple stochastic lattice model. A detailed analysis of the microscopic picture of the front dynamics shows that for the description of the far tip of the front, one has to abandon the idea of a uniformly translating front solution. The lattice and finite particle effects lead to a ``stop-and-go'' type dynamics at the far tip of the front, while the average front behind it ``crosses over'' to a uniformly translating solution. In this formulation, the effect of stochasticity on the asymptotic front speed is coded in the probability distribution of the times required for the advancement of the ``foremost bin''. We derive expressions of these probability distributions by matching the solution of the far tip with the uniformly translating solution behind. This matching includes various correlation effects in a mean-field type approximation. Our results for the probability distributions compare well to the results of stochastic numerical simulations. This approach also allows us to deal with much smaller values of NN than it is required to have the ln2N\ln^{-2}N asymptotics to be valid.Comment: 26 pages, 11 figures, to appear in Phys. rev.

    Two Loop Scalar Self-Mass during Inflation

    Full text link
    We work in the locally de Sitter background of an inflating universe and consider a massless, minimally coupled scalar with a quartic self-interaction. We use dimensional regularization to compute the fully renormalized scalar self-mass-squared at one and two loop order for a state which is released in Bunch-Davies vacuum at t=0. Although the field strength and coupling constant renormalizations are identical to those of lfat space, the geometry induces a non-zero mass renormalization. The finite part also shows a sort of growing mass that competes with the classical force in eventually turning off this system's super-acceleration.Comment: 31 pages, 5 figures, revtex4, revised for publication with extended list of reference

    Boron isotopes in foraminifera : systematics, biomineralisation, and CO2 reconstruction

    Get PDF
    Funding: Fellowship from University of St Andrews, $100 (pending) from Richard Zeebe, UK NERC grants NE/N003861/1 and NE/N011716/1.The boron isotope composition of foraminifera provides a powerful tracer for CO2 change over geological time. This proxy is based on the equilibrium of boron and its isotopes in seawater, which is a function of pH. However while the chemical principles underlying this proxy are well understood, its reliability has previously been questioned, due to the difficulty of boron isotope (δ11B) analysis on foraminferal samples and questions regarding calibrations between δ11B and pH. This chapter reviews the current state of the δ11B-pH proxy in foraminfera, including the pioneering studies that established this proxy’s potential, and the recent work that has improved understanding of boron isotope systematics in foraminifera and applied this tracer to the geological record. The theoretical background of the δ11B-pH proxy is introduced, including an accurate formulation of the boron isotope mass balance equations. Sample preparation and analysis procedures are then reviewed, with discussion of sample cleaning, the potential influence of diagenesis, and the strengths and weaknesses of boron purification by column chromatography versus microsublimation, and analysis by NTIMS versus MC-ICPMS. The systematics of boron isotopes in foraminifera are discussed in detail, including results from benthic and planktic taxa, and models of boron incorporation, fractionation, and biomineralisation. Benthic taxa from the deep ocean have δ11B within error of borate ion at seawater pH. This is most easily explained by simple incorporation of borate ion at the pH of seawater. Planktic foraminifera have δ11B close to borate ion, but with minor offsets. These may be driven by physiological influences on the foraminiferal microenvironment; a novel explanation is also suggested for the reduced δ11B-pH sensitivities observed in culture, based on variable calcification rates. Biomineralisation influences on boron isotopes are then explored, addressing the apparently contradictory observations that foraminifera manipulate pH during chamber formation yet their δ11B appears to record the pH of ambient seawater. Potential solutions include the influences of magnesium-removal and carbon concentration, and the possibility that pH elevation is most pronounced during initial chamber formation under favourable environmental conditions. The steps required to reconstruct pH and pCO2 from δ11B are then reviewed, including the influence of seawater chemistry on boron equilibrium, the evolution of seawater δ11B, and the influence of second carbonate system parameters on δ11B-based reconstructions of pCO2. Applications of foraminiferal δ11B to the geological record are highlighted, including studies that trace CO2 storage and release during recent ice ages, and reconstructions of pCO2 over the Cenozoic. Relevant computer codes and data associated with this article are made available online.Publisher PDFPeer reviewe

    Genome-wide physical activity interactions in adiposity. A meta-analysis of 200,452 adults

    Get PDF
    Physical activity (PA) may modify the genetic effects that give rise to increased risk of obesity. To identify adiposity loci whose effects are modified by PA, we performed genome-wide interaction meta-analyses of BMI and BMI-adjusted waist circumference and waist-hip ratio from up to 200,452 adults of European (n = 180,423) or other ancestry (n = 20,029). We standardized PA by categorizing it into a dichotomous variable where, on average, 23% of participants were categorized as inactive and 77% as physically active. While we replicate the interaction with PA for the strongest known obesity-risk locus in the FTO gene, of which the effect is attenuated by similar to 30% in physically active individuals compared to inactive individuals, we do not identify additional loci that are sensitive to PA. In additional genome-wide meta-analyses adjusting for PA and interaction with PA, we identify 11 novel adiposity loci, suggesting that accounting for PA or other environmental factors that contribute to variation in adiposity may facilitate gene discovery.Peer reviewe

    Taxing times: taxation, divided societies and the informal economy in Northern Nigeria

    Get PDF
    This paper challenges the notion that taxing the informal economy provides a mechanism for increasing popular political voice and rebuilding the social contract. It contends that current arguments for taxing the informal economy suffer from a Eurocentric understanding of taxation and state formation, and a fiscally essentialist and undifferentiated notion of the informal economy. Drawing on fieldwork in northern Nigeria, this paper shows that history, gender, wealth and ethno-religious identity influence how taxing the informal economy shapes governance outcomes. Evidence from Nigeria suggests an inverse relationship between informal economy taxation and political voice, posing the risk that increased taxation will exacerbate social divisions rather than rebuild the social contract

    Low incidence of SARS-CoV-2, risk factors of mortality and the course of illness in the French national cohort of dialysis patients

    Get PDF
    corecore