326 research outputs found

    Reaching micro-arcsecond astrometry with long baseline optical interferometry; application to the GRAVITY instrument

    Full text link
    A basic principle of long baseline interferometry is that an optical path difference (OPD) directly translates into an astrometric measurement. In the simplest case, the OPD is equal to the scalar product between the vector linking the two telescopes and the normalized vector pointing toward the star. However, a too simple interpretation of this scalar product leads to seemingly conflicting results, called here "the baseline paradox". For micro-arcsecond accuracy astrometry, we have to model in full the metrology measurement. It involves a complex system subject to many optical effects: from pure baseline errors to static, quasi-static and high order optical aberrations. The goal of this paper is to present the strategy used by the "General Relativity Analysis via VLT InTerferometrY" instrument (GRAVITY) to minimize the biases introduced by these defects. It is possible to give an analytical formula on how the baselines and tip-tilt errors affect the astrometric measurement. This formula depends on the limit-points of three type of baselines: the wide-angle baseline, the narrow-angle baseline, and the imaging baseline. We also, numerically, include non-common path higher-order aberrations, whose amplitude were measured during technical time at the Very Large Telescope Interferometer. We end by simulating the influence of high-order common-path aberrations due to atmospheric residuals calculated from a Monte-Carlo simulation tool for Adaptive optics systems. The result of this work is an error budget of the biases caused by the multiple optical imperfections, including optical dispersion. We show that the beam stabilization through both focal and pupil tracking is crucial to the GRAVITY system. Assuming the instrument pupil is stabilized at a 4 cm level on M1, and a field tracking below 0.2λ/D\lambda/D, we show that GRAVITY will be able to reach its objective of 10μ\muas accuracy.Comment: 14 pages. Accepted by A&

    Flares and variability from Sagittarius A*: five nights of simultaneous multi-wavelength observations

    Get PDF
    Aims. We report on simultaneous observations and modeling of mid-infrared (MIR), near-infrared (NIR), and submillimeter (submm) emission of the source Sgr A* associated with the supermassive black hole at the center of our Galaxy. Our goal was to monitor the activity of Sgr A* at different wavelengths in order to constrain the emitting processes and gain insight into the nature of the close environment of Sgr A*. Methods. We used the MIR instrument VISIR in the BURST imaging mode, the adaptive optics assisted NIR camera NACO, and the sub-mm antenna APEX to monitor Sgr A* over several nights in July 2007. Results. The observations reveal remarkable variability in the NIR and sub-mm during the five nights of observation. No source was detected in the MIR, but we derived the lowest upper limit for a flare at 8.59 microns (22.4 mJy with A_8.59mu = 1.6+/- 0.5). This observational constraint makes us discard the observed NIR emission as coming from a thermal component emitting at sub-mm frequencies. Moreover, comparison of the sub-mm and NIR variability shows that the highest NIR fluxes (flares) are coincident with the lowest sub-mm levels of our five-night campaign involving three flares. We explain this behavior by a loss of electrons to the system and/or by a decrease in the magnetic field, as might conceivably occur in scenarios involving fast outflows and/or magnetic reconnection.Comment: 10 pages, 7 figures, published in A&

    Dispersive wave runup on non-uniform shores

    Get PDF
    Historically the finite volume methods have been developed for the numerical integration of conservation laws. In this study we present some recent results on the application of such schemes to dispersive PDEs. Namely, we solve numerically a representative of Boussinesq type equations in view of important applications to the coastal hydrodynamics. Numerical results of the runup of a moderate wave onto a non-uniform beach are presented along with great lines of the employed numerical method (see D. Dutykh et al. (2011) for more details).Comment: 8 pages, 6 figures, 18 references. This preprint is submitted to FVCA6 conference proceedings. Other author papers can be downloaded at http://www.lama.univ-savoie.fr/~dutykh

    Discovery of a detached HI gas shell surrounding alpha Orionis

    Full text link
    We report the detection of the HI line at 21 cm in the direction of alpha Ori with the Nancay Radiotelescope and with the Very Large Array. The observations confirm the previous detection of HI emission centered on alpha Ori, but additionally reveal for the first time a quasi-stationary detached shell of neutral atomic hydrogen ~4 arcmin. in diameter (0.24 pc at a distance of 200 pc). The detached shell appears elongated in a direction opposite to the star's space motion. A simple model shows that this detached atomic gas shell can result from the collision of the stellar wind from alpha Ori with the local interstellar medium (ISM). It implies that alpha Ori has been losing matter at a rate of ~ 1.2x10^-6 solar masses per year for the past 8x10^4 years. In addition, we report the detection of atomic hydrogen associated with the far-infrared arc located 6 arcmin. north-east of alpha Ori, that has been suggested to trace the bow shock resulting from the motion of the star through the ISM. We report also the detection by the Galaxy Evolution Explorer (GALEX) of a far-UV counterpart to this arc.Comment: Accepted for publication in the Monthly Notices; version with full resolution figures available at http://aramis.obspm.fr/~lebertre/paper-alphaOri_MNRAS.pd

    Comparison between three-dimensional linear and nonlinear tsunami generation models

    Get PDF
    The modeling of tsunami generation is an essential phase in understanding tsunamis. For tsunamis generated by underwater earthquakes, it involves the modeling of the sea bottom motion as well as the resulting motion of the water above it. A comparison between various models for three-dimensional water motion, ranging from linear theory to fully nonlinear theory, is performed. It is found that for most events the linear theory is sufficient. However, in some cases, more sophisticated theories are needed. Moreover, it is shown that the passive approach in which the seafloor deformation is simply translated to the ocean surface is not always equivalent to the active approach in which the bottom motion is taken into account, even if the deformation is supposed to be instantaneous.Comment: 39 pages, 16 figures; Accepted to Theoretical and Computational Fluid Dynamics. Several references have been adde

    ALMA sub-mm maser and dust distribution of VY Canis Majoris

    Get PDF
    Cool, evolved stars have copious, enriched winds. The structure of these winds and the way they are accelerated is not well known. We need to improve our understanding by studying the dynamics from the pulsating stellar surface to about 10 stellar radii, where radiation pressure on dust is fully effective. Some red supergiants have highly asymmetric nebulae, implicating additional forces. We retrieved ALMA Science Verification data providing images of sub-mm line and continuum emission from VY CMa. This enables us to locate water masers with milli-arcsec precision and resolve the dusty continuum. The 658-, 321- and 325-GHz masers lie in irregular, thick shells at increasing distances from the centre of expansion. For the first time this is confirmed as the stellar position, coinciding with a compact peak offset to the NW of the brightest continuum emission. The maser shells (and dust formation zone) overlap but avoid each other on tens-au scales. Their distribution is broadly consistent with excitation models but the conditions and kinematics appear to be complicated by wind collisions, clumping and asymmetries.Comment: Letter 4 pages, 5 figures plus appendix with 3 figures. Accepted by Astronomy and Astrophysics Letter

    Visual/infrared interferometry of Orion Trapezium stars: Preliminary dynamical orbit and aperture synthesis imaging of the Theta 1 Orionis C system

    Get PDF
    Located in the Orion Trapezium cluster, Theta 1 Orionis C is one of the youngest and nearest high-mass stars (O5-O7) and also known to be a close binary system. Using new multi-epoch visual and near-infrared bispectrum speckle interferometric observations obtained at the BTA 6 m telescope, and IOTA near-infrared long-baseline interferometry, we trace the orbital motion of the Theta 1 Ori C components over the interval 1997.8 to 2005.9, covering a significant arc of the orbit. Besides fitting the relative position and the flux ratio, we apply aperture synthesis techniques to our IOTA data to reconstruct a model-independent image of the Theta 1 Ori C binary system. The orbital solutions suggest a high eccentricity (e approx. 0.91) and short-period (P approx. 10.9 yrs) orbit. As the current astrometric data only allows rather weak constraints on the total dynamical mass, we present the two best-fit orbits. From these orbital solutions one can be favoured, implying a system mass of 48 M_sun and a distance to the Trapezium cluster of 434 pc. When also taking the measured flux ratio and the derived location in the HR-diagram into account, we find good agreement for all observables, assuming a spectral type of O5.5 for Theta 1 Ori C1 (M=34.0 M_sun) and O9.5 for C2 (M=15.5 M_sun). We find indications that the companion C2 is massive itself, which makes it likely that its contribution to the intense UV radiation field of the Trapezium cluster is non-negligible. Furthermore, the high eccentricity of the preliminary orbit solution predicts a very small physical separation during periastron passage (approx. 1.5 AU, next passage around 2007.5), suggesting strong wind-wind interaction between the two O stars.Comment: 13 pages, 9 figures, Accepted for publication in Astronomy & Astrophysic

    A Low-Mass Planet with a Possible Sub-Stellar-Mass Host in Microlensing Event MOA-2007-BLG-192

    Full text link
    We report the detection of an extrasolar planet of mass ratio q ~ 2 x 10^(-4) in microlensing event MOA-2007-BLG-192. The best fit microlensing model shows both the microlensing parallax and finite source effects, and these can be combined to obtain the lens masses of M = 0.060 (+0.028 -0.021) M_sun for the primary and m = 3.3 (+4.9 -1.6) M_earth for the planet. However, the observational coverage of the planetary deviation is sparse and incomplete, and the radius of the source was estimated without the benefit of a source star color measurement. As a result, the 2-sigma limits on the mass ratio and finite source measurements are weak. Nevertheless, the microlensing parallax signal clearly favors a sub-stellar mass planetary host, and the measurement of finite source effects in the light curve supports this conclusion. Adaptive optics images taken with the Very Large Telescope (VLT) NACO instrument are consistent with a lens star that is either a brown dwarf or a star at the bottom of the main sequence. Follow-up VLT and/or Hubble Space Telescope (HST) observations will either confirm that the primary is a brown dwarf or detect the low-mass lens star and enable a precise determination of its mass. In either case, the lens star, MOA-2007-BLG-192L, is the lowest mass primary known to have a companion with a planetary mass ratio, and the planet, MOA-2007-BLG-192Lb, is probably the lowest mass exoplanet found to date, aside from the lowest mass pulsar planet.Comment: Accepted for publication in the Astrophysical Journal. Scheduled for the Sept. 1, 2008 issu

    OGLE-2009-BLG-023/MOA-2009-BLG-028: Characterization of a Binary Microlensing Event Based on Survey Data

    Full text link
    We report the result of the analysis of the light curve of a caustic-crossing binary-lens microlensing event OGLE-2009-BLG-023/MOA-2009-BLG-028. Even though the event was observed solely by survey experiments, we could uniquely determine the mass of the lens and distance to it by simultaneously measuring the Einstein radius and lens parallax. From this, we find that the lens system is composed of M-type dwarfs with masses (0.50±0.07) M(0.50\pm 0.07) \ M_\odot and (0.15±0.02) M(0.15\pm 0.02)\ M_\odot located in the Galactic disk with a distance of 1.8\sim 1.8 kpc toward the Galactic bulge direction. The event demonstrates that physical lens parameters of binary-lens events can be routinely determined from future high-cadence lensing surveys and thus microlensing can provide a new way to study Galactic binaries.Comment: 8 pages, 5 figure

    YREC: The Yale Rotating Stellar Evolution Code

    Get PDF
    The stellar evolution code YREC is outlined with emphasis on its applications to helio- and asteroseismology. The procedure for calculating calibrated solar and stellar models is described. Other features of the code such as a non-local treatment of convective core overshoot, and the implementation of a parametrized description of turbulence in stellar models, are considered in some detail. The code has been extensively used for other astrophysical applications, some of which are briefly mentioned at the end of the paper.Comment: 10 pages, 2 figures, ApSS accepte
    corecore