800 research outputs found

    Chaos in Symmetric Phase Oscillator Networks

    Get PDF
    Phase-coupled oscillators serve as paradigmatic models of networks of weakly interacting oscillatory units in physics and biology. The order parameter which quantifies synchronization was so far found to be chaotic only in systems with inhomogeneities. Here we show that even symmetric systems of identical oscillators may not only exhibit chaotic dynamics, but also chaotically fluctuating order parameters. Our findings imply that neither inhomogeneities nor amplitude variations are necessary to obtain chaos, i.e., nonlinear interactions of phases give rise to the necessary instabilities.Comment: 4 pages; Accepted by Physical Review Letter

    Digital versus screen film mammography: a clinical comparison

    Get PDF

    Insights into the regulation of DMSP synthesis in the diatom Thalassiosira pseudonana through APR activity, proteomics and gene expression analyses on cells acclimating to changes in salinity, light and nitrogen

    Get PDF
    Despite the importance of dimethylsulphoniopropionate (DMSP) in the global sulphur cycle and climate regulation, the biological pathways underpinning its synthesis in marine phytoplankton remain poorly understood. The intracellular concentration of DMSP increases with increased salinity, increased light intensity and nitrogen starvation in the diatom Thalassiosira pseudonana. We used these conditions to investigate DMSP synthesis at the cellular level via analysis of enzyme activity, gene expression and proteome comparison. The activity of the key sulphur assimilatory enzyme, adenosine 5′- phosphosulphate reductase was not coordinated with increasing intracellular DMSP concentration. Under all three treatments coordination in the expression of sulphur assimilation genes was limited to increases in sulphite reductase transcripts. Similarly, proteomic 2D gel analysis only revealed an increase in phosphoenolpyruvate carboxylase following increases in DMSP concentration. Our findings suggest that increased sulphur assimilation might not be required for increased DMSP synthesis, instead the availability of carbon and nitrogen substrates may be important in the regulation of this pathway. This contrasts with the regulation of sulphur metabolism in higher plants, which generally involves upregulation of several sulphur assimilatory enzymes. In T. pseudonana changes relating to sulphur metabolism were specific to the individual treatments and, given that little coordination was seen in transcript and protein responses across the three growth conditions, different patterns of regulation might be responsible for the increase in DMSP concentration seen under each treatment

    Excretion and folding of plasmalemma function to accommodate alterations in guard cell volume during stomatal closure in Vicia faba L.

    Get PDF
    Stomatal movement results in large and repetitive changes in cell volume and consequently surface area. While endocytosis has been extensively studied and is thought to be a major mechanism for accommodating the volume changes as evidenced mainly by fluorescent labelling and confocal imaging, studies at the ultrastructural level in intact guard cells of stomata regulated by natural factors have never been reported. Here, it is reported that excretion and folding of the plasmalemma are critical for accommodating the volume alterations in intact guard cells in Vicia faba L. Using transmission electron microscopy in combination with laser confocal microscopy, it was observed that in fully opened stomata the plasmalemma was smooth and tightly adhered to the cell walls while a whole large vacuole appeared in the cell. In the closed stomata, besides vacuole fragmentation, endocytosis of the tonoplast rather than the plasmalemma commonly occurred. Importantly, in stomata where pore closure was induced by circadian rhythm or CO2, numerous tiny vesicles were found outside the plasmalemma and, moreover, extensive folding of the plasmalemma could also be found in some regions of the cells. Additionally, an unknown structure was found at the interface between the plasmalemma and cell walls, especially in those areas of the cell where extensive folding occurred, suggesting that plasmalemma turnover is possibly associated with an interaction between the plasmalemma and cell walls. Collectively, the results strongly indicate that excretion and folding of the plasmalemma are critical for the accommodation of the cell volume alterations during stomatal movement

    JUNO Conceptual Design Report

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO) is proposed to determine the neutrino mass hierarchy using an underground liquid scintillator detector. It is located 53 km away from both Yangjiang and Taishan Nuclear Power Plants in Guangdong, China. The experimental hall, spanning more than 50 meters, is under a granite mountain of over 700 m overburden. Within six years of running, the detection of reactor antineutrinos can resolve the neutrino mass hierarchy at a confidence level of 3-4σ\sigma, and determine neutrino oscillation parameters sin2θ12\sin^2\theta_{12}, Δm212\Delta m^2_{21}, and Δmee2|\Delta m^2_{ee}| to an accuracy of better than 1%. The JUNO detector can be also used to study terrestrial and extra-terrestrial neutrinos and new physics beyond the Standard Model. The central detector contains 20,000 tons liquid scintillator with an acrylic sphere of 35 m in diameter. \sim17,000 508-mm diameter PMTs with high quantum efficiency provide \sim75% optical coverage. The current choice of the liquid scintillator is: linear alkyl benzene (LAB) as the solvent, plus PPO as the scintillation fluor and a wavelength-shifter (Bis-MSB). The number of detected photoelectrons per MeV is larger than 1,100 and the energy resolution is expected to be 3% at 1 MeV. The calibration system is designed to deploy multiple sources to cover the entire energy range of reactor antineutrinos, and to achieve a full-volume position coverage inside the detector. The veto system is used for muon detection, muon induced background study and reduction. It consists of a Water Cherenkov detector and a Top Tracker system. The readout system, the detector control system and the offline system insure efficient and stable data acquisition and processing.Comment: 328 pages, 211 figure

    The vertebral body growth plate in scoliosis: a primary disturbance of growth?

    Get PDF
    Study Design and Aims: This was an observational pilot study of the vertebral body growth plates in scoliosis involving high-resolution coronal plane magnetic resonance (MR) imaging and histological examination. One aim of this study was to determine whether vertebral body growth plates in scoliosis demonstrated abnormalities on MR imaging. A second aim was to determine if a relationship existed between MR and histological abnormalities in these vertebral body growth plates. Methods: MR imaging sequences of 18 patients demonstrated the vertebralbody growth plates well enough to detect gross abnormalities/ deficient areas/zones. Histological examination of ten vertebral body growth plates removed during routine scoliosis surgery was performed. Observational histological comparison with MR images was possible in four cases. Results: Four of the 18 MR images demonstrated spines with normal curvature and normal vertebral body growth plates. In 13 scoliotic spines, convex and concave side growth plate deficiencies were observed most frequently at or near the apex of the curve. One MR image demonstrated a 55° kyphosis and no convex or concave side deficiencies. The degree of vertebral body wedging was independent of the presence of vertebral body growth plate deficiency. Histological abnormalities of the vertebral body growth plates were demonstrated in four with MR imaging abnormalities. Conclusion: This study demonstrated MR image abnormalities of scoliotic vertebral body growth plates compared to controls. A qualitative relationship was demonstrated between MR imaging and histological abnormalities. The finding that vertebral body growth plate deficiencies occurred both on the convex and concave sides of the spine, closest to the apical vertebra of the scoliosis curve, implied that they are less likely to be the result of adaptive changes to the physical forces involved in the scoliotic deformity. One explanation is that they represent a primary disturbance of growth

    Low-energy (anti)neutrino physics with Borexino: Neutrinos from the primary proton-proton fusion process in the Sun

    Full text link
    The Sun is fueled by a series of nuclear reactions that produce the energy that makes it shine. The primary reaction is the fusion of two protons into a deuteron, a positron and a neutrino. These neutrinos constitute the vast majority of neutrinos reaching Earth, providing us with key information about what goes on at the core of our star. Several experiments have now confirmed the observation of neutrino oscillations by detecting neutrinos from secondary nuclear processes in the Sun; this is the first direct spectral measurement of the neutrinos from the keystone proton-proton fusion. This observation is a crucial step towards the completion of the spectroscopy of pp-chain neutrinos, as well as further validation of the LMA-MSW model of neutrino oscillations.Comment: Proceedings from NOW (Neutrino Oscillation Workshop) 201
    corecore