398 research outputs found

    High-pressure, low-abundance water in bipolar outflows. Results from a Herschel-WISH survey

    Get PDF
    (Abridged) We present a survey of the water emission in a sample of more than 20 outflows from low mass young stellar objects with the goal of characterizing the physical and chemical conditions of the emitting gas. We have used the HIFI and PACS instruments on board the Herschel Space Observatory to observe the two fundamental lines of ortho-water at 557 and 1670 GHz. These observations were part of the "Water In Star-forming regions with Herschel" (WISH) key program, and have been complemented with CO and H2 data. We find that the emission from water has a different spatial and velocity distribution from that of the J=1-0 and 2-1 transitions of CO, but it has a similar spatial distribution to H2, and its intensity follows the H2 intensity derived from IRAC images. This suggests that water traces the outflow gas at hundreds of kelvins responsible for the H2 emission, and not the component at tens of kelvins typical of low-J CO emission. A warm origin of the water emission is confirmed by a remarkable correlation between the intensities of the 557 and 1670 GHz lines, which also indicates the emitting gas has a narrow range of excitations. A non-LTE radiative transfer analysis shows that while there is some ambiguity on the exact combination of density and temperature values, the gas thermal pressure nT is constrained within less than a factor of 2. The typical nT over the sample is 4 10^{9} cm^{-3}K, which represents an increase of 10^4 with respect to the ambient value. The data also constrain within a factor of 2 the water column density. When this quantity is combined with H2 column densities, the typical water abundance is only 3 10^{-7}, with an uncertainty of a factor of 3. Our data challenge current C-shock models of water production due to a combination of wing-line profiles, high gas compressions, and low abundances.Comment: 21 pages, 13 figures. Accepted for publication in A&

    Water in low-mass star-forming regions with Herschel (WISH-LM): High-velocity H2O bullets in L1448-MM observed with HIFI

    Full text link
    Herschel-HIFI observations of water in the low-mass star-forming object L1448-MM, known for its prominent outflow, are presented, as obtained within the `Water in star-forming regions with Herschel' (WISH) key programme. Six H2-16O lines are targeted and detected (E_up/k_B ~ 50-250 K), as is CO J= 10-9 (E_up/k_B ~ 305 K), and tentatively H2-18O 110-101 at 548 GHz. All lines show strong emission in the "bullets" at |v| > 50 km/s from the source velocity, in addition to a broad, central component and narrow absorption. The bullets are seen much more prominently in H2_2O than in CO with respect to the central component, and show little variation with excitation in H2O profile shape. Excitation conditions in the bullets derived from CO lines imply a temperature >150 K and density >10^5 cm^-3, similar to that of the broad component. The H2O/CO abundance ratio is similar in the "bullets" and the broad component, ~ 0.05-1.0, in spite of their different origins in the molecular jet and the interaction between the outflow and the envelope. The high H2O abundance indicates that the bullets are H2 rich. The H2O cooling in the "bullets" and the broad component is similar and higher than the CO cooling in the same components. These data illustrate the power of Herschel-HIFI to disentangle different dynamical components in low-mass star-forming objects and determine their excitation and chemical conditions.Comment: Accepted for publication in A&

    CAST: Recent results & future outlook

    Get PDF
    Çetin, Serkant Ali (Dogus Author) -- Ezer, Cemile (Dogus Author) -- Yıldız, Süleyman Cenk (Dogus Author) -- Conference full title: 6th Patras Workshop on Axions, WIMPs and WISPs, PATRAS 2010; Zurich; Switzerland; 5 July 2010 through 9 July 2010.The CAST (CERN Axion Solar Telescope) experiment is searching for solar axions by their conversion into photons inside the magnet pipes of an LHC dipole. The analysis of data taken so far has shown no signal above the background, thus implying an upper limit to the axion-photon coupling of ga < 0.85 × 10-10GeV -1 at 95% CL for ma < 0.02 eV/c2. Ongoing measurements, with the magnet bores filled with a buffer gas (3He), are improving the sensitivity of the experiment for higher axion masses towards 1 eV/c2. Recent results, new ideas for Axion-Like Particle (WISPs) searches with CAST in the near future and the prospects of a new generation Helioscope are presented here

    Synthesis and characterization of Fe3O4@Cs@Ag nanocomposite and its use in the production of magnetic and antibacterial nanofibrous membranes

    Get PDF
    Electrospinning is a promising technique to produce polymeric as well as metal oxide nanofibers in diverse domains. In this work, different weight ratios (5%, 7.5% and 10%) of Fe3O4@Cs@Ag magnetic nanoparticles were added in PVP (polyvinylpyrrolidone) polymer and fabricated via electrospinning method to produce magnetic nanofibers (MNFs). Structural, magnetic, morphological, spectroscopic and thermal properties of produced nanofibers were characterized. Furtheremore, antibacterial effects of Fe3O4@Cs@Ag nanofibrous membrane was investigated. Obtained SEM images showed that produced nanofibers were uniform and defect free. Moreover, crystallinity and magnetic moment of fibers was tested by using X-ray diffraction and a vibrating sample magnetometer. The results showed that produced nanofibrous membranes exhibited good antibacterial activity versus Staphylococcus aureus, Bacillus subtilis, Enterococcus faecalis, Escherichia coli, Proteus mirabilis and Pseudomonas aeruginosa. © 2020National Science Foundation, NSF; Directorate for Mathematical and Physical Sciences, MPS: 1726617This work was supported in part by Scientific Research Unit of Nam?k Kemal University within NKUBAP.06.GA.19.195 coded project. Magnetic Characterization at Virginia Commonwealth University was partially supported by National Science Foundation, Award Number: 1726617.This work was supported in part by Scientific Research Unit of Namık Kemal University within NKUBAP.06.GA.19.195 coded project. Magnetic Characterization at Virginia Commonwealth University was partially supported by National Science Foundation , Award Number: 1726617

    The abundance of C18O and HDO in the envelope and hot core of the intermediate mass protostar NGC 7129 FIRS 2

    Full text link
    NGC 7129 FIRS 2 is a young intermediate-mass (IM) protostar, which is associated with two energetic bipolar outflows and displays clear signs of the presence of a hot core. It has been extensively observed with ground based telescopes and within the WISH Guaranteed Time Herschel Key Program. We present new observations of the C18O 3-2 and the HDO 3_{12}-2_{21} lines towards NGC 7129 FIRS 2. Combining these observations with Herschel data and modeling their emissions, we constrain the C18O and HDO abundance profiles across the protostellar envelope. In particular, we derive the abundance of C18O and HDO in the hot core. The intensities of the C18O lines are well reproduced assuming that the C18O abundance decreases through the protostellar envelope from the outer edge towards the centre until the point where the gas and dust reach the CO evaporation temperature (~20-25 K) where the C18O is released back to the gas phase. Once the C18O is released to the gas phase, the modelled C18O abundance is found to be ~1.6x10^{-8}, which is a factor of 10 lower than the reference abundance. This result is supported by the non-detection of C18O 9-8, which proves that even in the hot core (T_k>100 K) the CO abundance must be 10 times lower than the reference value. Several scenarios are discussed to explain this C18O deficiency. One possible explanation is that during the pre-stellar and protostellar phase, the CO is removed from the grain mantles by reactions to form more complex molecules. Our HDO modeling shows that the emission of HDO 3_{12}-2_{21} line is maser and comes from the hot core (T_k>100 K). Assuming the physical structure derived by Crimier et al. (2010), we determine a HDO abundance of ~0.4 - 1x10^{-7} in the hot core of this IM protostar, similar to that found in the hot corinos NGC 1333 IRAS 2A and IRAS 16293-2422.Comment: 10 pages, 7 figure

    Uncertainties in models of stellar structure and evolution

    Get PDF
    Numerous physical aspects of stellar physics have been presented in Ses- sion 2 and the underlying uncertainties have been tentatively assessed. We try here to highlight some specific points raised after the talks and during the general discus- sion at the end of the session and eventually at the end of the workshop. A table of model uncertainties is then drawn with the help of the participants in order to give the state of the art in stellar modeling uncertainties as of July 2013.Comment: Proc. of the workshop "Asteroseismology of stellar populations in the Milky Way" (Sesto, 22-26 July 2013), Astrophysics and Space Science Proceedings, (eds. A. Miglio, L. Girardi, P. Eggenberger, J. Montalban

    The massive protostar W43-MM1 as seen by Herschel-HIFI water spectra: high turbulence and accretion luminosity

    Get PDF
    We present Herschel/HIFI observations of fourteen water lines in W43-MM1, a massive protostellar object in the luminous star cluster-forming region W43. We analyze the gas dynamics from the line profiles using Herschel-HIFI observations (WISH-KP) of fourteen far-IR water lines (H2O, H217O, H218O), CS(11-10), and C18O(9-8) lines, and using our modeling of the continuum spectral energy distribution. As for lower mass protostellar objects, the molecular line profiles are a mix of emission and absorption, and can be decomposed into 'medium', and 'broad' velocity components. The broad component is the outflow associated with protostars of all masses. Our modeling shows that the remainder of the water profiles can be well fitted by an infalling and passively heated envelope, with highly supersonic turbulence varying from 2.2 km/s in the inner region to 3.5 km/s in the outer envelope. Also, W43-MM1 has a high accretion rate, between 4.0 x 10^{-4} and 4.0 x 10^{-2} \msun /yr, derived from the fast (0.4-2.9 km/s) infall observed. We estimate a lower mass limit of gaseous water of 0.11 \msun and total water luminosity of 1.5 \lsun (in the 14 lines presented here). The central hot core is detected with a water abundance of 1.4 x 10^{-4} while the water abundance for the outer envelope is 8 x10^{-8}. The latter value is higher than in other sources, most likely related to the high turbulence and the micro-shocks created by its dissipation. Examining water lines of various energies, we find that the turbulent velocity increases with the distance to the center. While not in clear disagreement with the competitive accretion scenario, this behavior is predicted by the turbulent core model. Moreover, the estimated accretion rate is high enough to overcome the expected radiation pressure.Comment: Accepted in A&A on April 2, 2012. 12 pages 7 figure
    corecore