Herschel-HIFI observations of water in the low-mass star-forming object
L1448-MM, known for its prominent outflow, are presented, as obtained within
the `Water in star-forming regions with Herschel' (WISH) key programme. Six
H2-16O lines are targeted and detected (E_up/k_B ~ 50-250 K), as is CO J= 10-9
(E_up/k_B ~ 305 K), and tentatively H2-18O 110-101 at 548 GHz. All lines show
strong emission in the "bullets" at |v| > 50 km/s from the source velocity, in
addition to a broad, central component and narrow absorption. The bullets are
seen much more prominently in H2O than in CO with respect to the central
component, and show little variation with excitation in H2O profile shape.
Excitation conditions in the bullets derived from CO lines imply a temperature
>150 K and density >10^5 cm^-3, similar to that of the broad component. The
H2O/CO abundance ratio is similar in the "bullets" and the broad component, ~
0.05-1.0, in spite of their different origins in the molecular jet and the
interaction between the outflow and the envelope. The high H2O abundance
indicates that the bullets are H2 rich. The H2O cooling in the "bullets" and
the broad component is similar and higher than the CO cooling in the same
components. These data illustrate the power of Herschel-HIFI to disentangle
different dynamical components in low-mass star-forming objects and determine
their excitation and chemical conditions.Comment: Accepted for publication in A&