112 research outputs found

    mRNA/microRNA Profile at the Metamorphic Stage of Olive Flounder (Paralichthys olivaceus)

    Get PDF
    Flatfish is famous for the asymmetric transformation during metamorphosis. The molecular mechanism behind the asymmetric development has been speculated over a century and is still not well understood. To date, none of the metamorphosis-related genes has been identified in flatfish. As the first step to screen metamorphosis-related gene, we constructed a whole-body cDNA library and a whole-body miRNA library in this study and identified 1051 unique ESTs, 23 unique miRNAs, and 4 snoRNAs in premetamorphosing and prometamorphosing Paralichthys olivaceus. 1005 of the ESTs were novel, suggesting that there was a special gene expression profile at metamorphic stage. Four miRNAs (pol-miR-20c, pol-miR-23c, pol-miR-130d, and pol-miR-181e) were novel to P. olivaceus; they were characterized as highly preserved homologies of published miRNAs but with at least one nucleotide differed. Representative 24 mRNAs and 23 miRNAs were quantified during metamorphosis of P. olivaceus by using quantitative RT PCR or stem-loop qRT PCR. Our results showed that 20 of mRNAs might be associated with early metamorphic events, 10 of mRNAs might be related with later metamorphic events, and 16 of miRNAs might be involved in the regulation of metamorphosis. The data provided in this study would be helpful for further identifying metamorphosis-related gene in P. olivaceus

    Fossilized skin reveals coevolution with feathers and metabolism in feathered dinosaurs and early birds

    Get PDF
    Feathers are remarkable evolutionary innovations that are associated with complex adaptations of the skin in modern birds. Fossilised feathers in non-avian dinosaurs and basal birds provide insights into feather evolution, but how associated integumentary adaptations evolved is unclear. Here we report the discovery of fossil skin, preserved with remarkable nanoscale fidelity, in three non-avian maniraptoran dinosaurs and a basal bird from the Cretaceous Jehol biota (China). The skin comprises patches of desquamating epidermal corneocytes that preserve a cytoskeletal array of helically coiled α-keratin tonofibrils. This structure confirms that basal birds and non-avian dinosaurs shed small epidermal flakes as in modern mammals and birds, but structural differences imply that these Cretaceous taxa had lower body heat production than modern birds. Feathered epidermis acquired many, but not all, anatomically modern attributes close to the base of the Maniraptora by the Middle Jurassic

    Directional mechanical stability of Bacteriophage φ29 motor’s 3WJ-pRNA: Extraordinary robustness along portal axis

    Get PDF
    The molecular motor exploited by bacteriophage φ29 to pack DNA into its capsid is regarded as one of the most powerful mechanical devices present in viral, bacterial, and eukaryotic systems alike. Acting as a linker element, a prohead RNA (pRNA) effectively joins the connector and ATPase (adenosine triphosphatase) components of the φ29 motor. During DNA packing, this pRNA needs to withstand enormous strain along the capsid’s portal axis—how this remarkable stability is achieved remains to be elucidated. We investigate the mechanical properties of the φ29 motor’s three-way junction (3WJ)–pRNA using a combined steered molecular dynamics and atomic force spectroscopy approach. The 3WJ exhibits strong resistance to stretching along its coaxial helices, demonstrating its super structural robustness. This resistance disappears, however, when external forces are applied to the transverse directions. From a molecular standpoint, we demonstrate that this direction-dependent stability can be attributed to two Mg clamps that cooperate and generate mechanical resistance in the pRNA’s coaxial direction. Our results suggest that the asymmetric nature of the 3WJ’s mechanical stability is entwined with its biological function: Enhanced rigidity along the portal axis is likely essential to withstand the strain caused by DNA condensation, and flexibility in other directions should aid in the assembly of the pRNA and its association with other motor components

    Response of riparian vegetation to water-table changes in the lower reaches of Tarim River, Xinjiang Uygur, China

    Get PDF
    The lower reaches of Tarim River in the Xinjiang Uygur region of western China had been dried out for more than 30 years before water began to be diverted from Konqi (Peacock) River via a 927-km-long channel in year 2000, aimed at improving the riparian ecological systems. Since then, eight intermittent water deliveries have been carried out. To evaluate the response of riparian vegetation to these operations, the groundwater regime and vegetation changes have been monitored along the 350-km-long stem of the river using a network of 40 dug wells at nine transects across the river and 30 vegetation plots at key sites. Results show that the water table rose remarkably, i.e. from a depth of 9.87m before the water delivery to 3.16m after the third water delivery. The lateral distance of affected water table extended to 1,050m from the riverbank after the fourth water delivery. The riparian vegetation has changed in composition, type, distribution, and growing behavior. This shows that the water deliveries have had significant effects on restoration of riparian ecosystems

    Quantum-squeezing effects of strained multilayer graphene NEMS

    Get PDF
    Quantum squeezing can improve the ultimate measurement precision by squeezing one desired fluctuation of the two physical quantities in Heisenberg relation. We propose a scheme to obtain squeezed states through graphene nanoelectromechanical system (NEMS) taking advantage of their thin thickness in principle. Two key criteria of achieving squeezing states, zero-point displacement uncertainty and squeezing factor of strained multilayer graphene NEMS, are studied. Our research promotes the measured precision limit of graphene-based nano-transducers by reducing quantum noises through squeezed states

    CCND1 as a Predictive Biomarker of Neoadjuvant Chemotherapy in Patients with Locally Advanced Head and Neck Squamous Cell Carcinoma

    Get PDF
    BACKGROUND: Cyclin D1 (CCND1) has been associated with chemotherapy resistance and poor prognosis. In this study, we tested the hypothesis that CCND1 expression determines response and clinical outcomes in locally advanced head and neck squamous cell carcinoma (HNSCC) patients treated with neoadjuvant chemotherapy followed by surgery and radiotherapy. METHODOLOGY AND FINDINGS: 224 patients with HNSCC were treated with either cisplatin-based chemotherapy followed by surgery and radiotherapy (neoadjuvant group, n = 100) or surgery and radiotherapy (non-neoadjuvant group, n = 124). CCND1 expression was assessed by immunohistochemistry. CCND1 levels were analyzed with chemotherapy response, disease-free survival (DFS) and overall survival (OS). There was no significant difference between the neoadjuvant group and non-neoadjuvant group in DFS and OS (p = 0.929 and p = 0.760) when patients treated with the indiscriminate administration of cisplatin-based chemotherapy. However, in the neoadjuvant group, patients whose tumors showed a low CCND1 expression more likely respond to chemotherapy (p<0.001) and had a significantly better OS and DFS than those whose tumors showed a high CCND1 expression (73% vs 8%, p<0.001; 63% vs 6%, p<0.001). Importantly, patients with a low CCND1 expression in neoadjuvant group received more survival benefits than those in non-neoadjuvant group (p = 0.016), however patients with a high CCND1 expression and treated with neoadjuvant chemotherapy had a significantly poor OS compared to those treated with surgery and radiotherapy (p = 0.032). A multivariate survival analysis also showed CCND1 expression was an independent predictive factor (p<0.001). CONCLUSIONS: This study suggests that some but not all patients with HNSCC may benefit from neoadjuvant chemotherapy with cisplatin-based regimen and CCND1 expression may serve as a predictive biomarker in selecting patients undergo less than two cycles of neoadjuvant chemotherapy

    Twenty-three unsolved problems in hydrology (UPH) – a community perspective

    Get PDF
    This paper is the outcome of a community initiative to identify major unsolved scientific problems in hydrology motivated by a need for stronger harmonisation of research efforts. The procedure involved a public consultation through on-line media, followed by two workshops through which a large number of potential science questions were collated, prioritised, and synthesised. In spite of the diversity of the participants (230 scientists in total), the process revealed much about community priorities and the state of our science: a preference for continuity in research questions rather than radical departures or redirections from past and current work. Questions remain focussed on process-based understanding of hydrological variability and causality at all space and time scales. Increased attention to environmental change drives a new emphasis on understanding how change propagates across interfaces within the hydrological system and across disciplinary boundaries. In particular, the expansion of the human footprint raises a new set of questions related to human interactions with nature and water cycle feedbacks in the context of complex water management problems. We hope that this reflection and synthesis of the 23 unsolved problems in hydrology will help guide research efforts for some years to come
    • 

    corecore