188 research outputs found

    Molecular Nature of Marine Particulate Organic Iron-Carrying Moieties Revealed by Electrospray Ionization Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry (ESI-FTICRMS)

    Get PDF
    Marine sinking particulate organic matter (POM), acting as a link between surface primary production and burial of organic matter in marine sediments, undergoes a variety of physical and biochemical alterations on its way to the deep ocean, resulting in an increase in its un-characterizable proportion with diagenesis. Further, the binding ligands in POM for iron, an essential nutrient to marine life and tightly coupled with organic matter, has rarely been studied. In the current study, we employed an approach combining sequential extraction with ultrahigh resolution mass spectrometry (ESI-FTICRMS), in order to explore and unravel the chemical characteristics of organic matter compounds relevant to marine particle flux within the mesopelagic and deep ocean, with a focus on the potential iron-carrying molecules. With increasing depth, POM increases in aliphaticity, and decreases in intensity-normalized O/C ratios, aromatics, and carboxylic-rich alicyclic molecules (CRAM)-like compounds. The potential iron-carrying molecules account for ∼14% of total identified molecules, and appear to have been incorporated into the marine particles via ion complexation, hydrophobic interaction, and/or interlayered “occlusion.” The relative abundance of iron-binding organic molecules in these three operationally-defined categories changes with depth: “surficially-complexed” fraction decreases with depth, the “interlayered-occluded” fraction increases to a comparable extent and “hydrophobic interaction” fraction occurs at all depths. Collectively, the potential iron-carrying organic molecules exhibit a set of unique molecular characteristics: a relatively lower average H/C ratio and a higher O/C ratio compared to bulk POM, a dominance of aromatics, black carbon-like compounds and CRAM-like compounds, and minor amounts of aliphatics. These molecules exhibit partial similar molecular features as precursors formed from photochemical reactions in the surface ocean, but they have been greatly modified by flux processes. Noticeably, a minor fraction of these iron-carrying molecules

    c-Fos as a Proapoptotic Agent in TRAIL-Induced Apoptosis in Prostate Cancer Cells

    Get PDF
    Tumor necrosis factor–related apoptosis-inducing ligand (TRAIL)/Apo-2L promotes apoptosis in cancer cells while sparing normal cells. Although many cancers are sensitive to TRAIL-induced apoptosis, some evade the proapoptotic effects of TRAIL. Therefore, differentiating molecular mechanisms that distinguish between TRAIL-sensitive and TRAIL-resistant tumors are essential for effective cancer therapies. Here, we show that c-Fos functions as a proapoptotic agent by repressing the antiapoptotic molecule c-FLIP(L). c-Fos binds the c-FLIP(L) promoter, represses its transcriptional activity, and reduces c-FLIP(L) mRNA and protein levels. Therefore, c-Fos is a key regulator of c-FLIP(L), and activation of c-Fos determines whether a cancer cell will undergo cell death after TRAIL treatment. Strategies to activate c-Fos or inhibit c-FLIP(L) may potentiate TRAILbased proapoptotic therapies

    Circulating Fibroblast Growth Factor 21 Levels Are Closely Associated with Hepatic Fat Content: A Cross-Sectional Study

    Get PDF
    BACKGROUND AND AIMS: Fibroblasts growth factor 21 (FGF21), a liver-secreted endocrine factor involved in regulating glucose and lipid metabolism, has been shown to be elevated in patients with non-alcoholic fatty liver disease (NAFLD). This study aimed to evaluate the quantitative correlation between serum FGF21 level and hepatic fat content. METHODS: A total of 138 subjects (72 male and 66 female) aged from 18 to 65 years with abnormal glucose metabolism and B-ultrasonography diagnosed fatty liver were enrolled in the study. Serum FGF21 levels were determined by an in-house chemiluminescence immunoassay and hepatic fat contents were measured by proton magnetic resonance spectroscopy. RESULTS: Serum FGF21 increased progressively with the increase of hepatic fat content, but when hepatic fat content increased to the fourth quartile, FGF21 tended to decline. Serum FGF21 concentrations were positively correlated with hepatic fat content especially in subjects with mild/moderate hepatic steatosis (r = 0.276, p = 0.009). Within the range of hepatic steatosis from the first to third quartile, FGF21 was superior to any other traditional clinical markers including ALT to reflect hepatic fat content. When the patients with severe hepatic steatosis (the fourth quartile) were included, the quantitative correlation between FGF21 and hepatic fat content was weakened. CONCLUSIONS: Serum FGF21 was a potential biomarker to reflect the hepatic fat content in patients with mild or moderate NAFLD. In severe NAFLD patients, FGF21 concentration might decrease due to liver inflammation or injury

    Tourists as Mobile Gamers: Gamification for Tourism Marketing

    Get PDF
    Gaming as a cutting-edge concept has recently been used by some innovative tourism sectors as a marketing tool and as a method of deeper engagement with visitors. This research aims to explore the gamification trend and its potential for experience development and tourism marketing. Using a focus group, this paper discusses gaming and tourism, and explores what drives tourists to play games. The results suggest tourists’ game playing motivation is multidimensional. Players tend to start with purposive information seeking, then move on to an intrinsic stimulation. Socialization is also an important dimension. The research demonstrates several implications for tourism marketing

    MS4a4B, a CD20 Homologue in T Cells, Inhibits T Cell Propagation by Modulation of Cell Cycle

    Get PDF
    MS4a4B, a CD20 homologue in T cells, is a novel member of the MS4A gene family in mice. The MS4A family includes CD20, FcεRIβ, HTm4 and at least 26 novel members that are characterized by their structural features: with four membrane-spanning domains, two extracellular domains and two cytoplasmic regions. CD20, FcεRIβ and HTm4 have been found to function in B cells, mast cells and hematopoietic cells respectively. However, little is known about the function of MS4a4B in T cell regulation. We demonstrate here that MS4a4B negatively regulates mouse T cell proliferation. MS4a4B is highly expressed in primary T cells, natural killer cells (NK) and some T cell lines. But its expression in all malignant T cells, including thymoma and T hybridoma tested, was silenced. Interestingly, its expression was regulated during T cell activation. Viral vector-driven overexpression of MS4a4B in primary T cells and EL4 thymoma cells reduced cell proliferation. In contrast, knockdown of MS4a4B accelerated T cell proliferation. Cell cycle analysis showed that MS4a4B regulated T cell proliferation by inhibiting entry of the cells into S-G2/M phase. MS4a4B-mediated inhibition of cell cycle was correlated with upregulation of Cdk inhibitory proteins and decreased levels of Cdk2 activity, subsequently leading to inhibition of cell cycle progression. Our data indicate that MS4a4B negatively regulates T cell proliferation. MS4a4B, therefore, may serve as a modulator in the negative-feedback regulatory loop of activated T cell

    Genetic or pharmaceutical blockade of phosphoinositide 3-kinase p110δ prevents chronic rejection of heart allografts.

    Get PDF
    Chronic rejection is the major cause of long-term heart allograft failure, characterized by tissue infiltration by recipient T cells with indirect allospecificity. Phosphoinositol-3-kinase p110δ is a key mediator of T cell receptor signaling, regulating both T cell activation and migration of primed T cells to non-lymphoid antigen-rich tissue. We investigated the effect of genetic or pharmacologic inactivation of PI3K p110δ on the development of chronic allograft rejection in a murine model in which HY-mismatched male hearts were transplanted into female recipients. We show that suppression of p110δ activity significantly attenuates the development of chronic rejection of heart grafts in the absence of any additional immunosuppressive treatment by impairing the localization of antigen-specific T cells to the grafts, while not inducing specific T cell tolerance. p110δ pharmacologic inactivation is effective when initiated after transplantation. Targeting p110δ activity might be a viable strategy for the treatment of heart chronic rejection in humans

    PP13, Maternal ABO Blood Groups and the Risk Assessment of Pregnancy Complications

    Get PDF
    Placental Protein 13 (PP13), an early biomarker of preeclampsia, is a placenta-specific galectin that binds beta-galactosides, building-blocks of ABO blood-group antigens, possibly affecting its bioavailability in blood.We studied PP13-binding to erythrocytes, maternal blood-group effect on serum PP13 and its performance as a predictor of preeclampsia and intrauterine growth restriction (IUGR). Datasets of maternal serum PP13 in Caucasian (n = 1078) and Hispanic (n = 242) women were analyzed according to blood groups. In vivo, in vitro and in silico PP13-binding to ABO blood-group antigens and erythrocytes were studied by PP13-immunostainings of placental tissue-microarrays, flow-cytometry of erythrocyte-bound PP13, and model-building of PP13--blood-group H antigen complex, respectively. Women with blood group AB had the lowest serum PP13 in the first trimester, while those with blood group B had the highest PP13 throughout pregnancy. In accordance, PP13-binding was the strongest to blood-group AB erythrocytes and weakest to blood-group B erythrocytes. PP13-staining of maternal and fetal erythrocytes was revealed, and a plausible molecular model of PP13 complexed with blood-group H antigen was built. Adjustment of PP13 MoMs to maternal ABO blood group improved the prediction accuracy of first trimester maternal serum PP13 MoMs for preeclampsia and IUGR.ABO blood group can alter PP13-bioavailability in blood, and it may also be a key determinant for other lectins' bioavailability in the circulation. The adjustment of PP13 MoMs to ABO blood group improves the predictive accuracy of this test

    Genome-wide association study of paclitaxel and carboplatin disposition in women with epithelial ovarian cancer

    Get PDF
    Identifying single nucleotide polymorphisms (SNPs) that influence chemotherapy disposition may help to personalize cancer treatment and limit toxicity. Genome-wide approaches are unbiased, compared with candidate gene studies, but usually require large cohorts. As most chemotherapy is given cyclically multiple blood sampling is required to adequately define drug disposition, limiting patient recruitment. We found that carboplatin and paclitaxel disposition are stable phenotypes in ovarian cancer patients and tested a genome-wide association study (GWAS) design to identify SNPs associated with chemotherapy disposition. We found highly significant SNPs in ABCC2, a known carboplatin transporter, associated with carboplatin clearance (asymptotic P = 5.2 × 106, empirical P = 1.4 × 10-5), indicating biological plausibility. We also identified novel SNPs associated with paclitaxel disposition, including rs17130142 with genome-wide significance (asymptotic P = 2.0 × 10-9, empirical P = 1.3 × 10-7). Although requiring further validation, our work demonstrated that GWAS of chemotherapeutic drug disposition can be effective, even in relatively small cohorts, and can be adopted in drug development and treatment programs

    Meta-analysis of epigenome-wide association studies in neonates reveals widespread differential DNA methylation associated with birthweight

    Get PDF
    Birthweight is associated with health outcomes across the life course, DNA methylation may be an underlying mechanism. In this meta-analysis of epigenome-wide association studies of 8,825 neonates from 24 birth cohorts in the Pregnancy And Childhood Epigenetics Consortium, we find that DNA methylation in neonatal blood is associated with birthweight at 914 sites, with a difference in birthweight ranging from -183 to 178 grams per 10% increase in methylation (P-Bonferroni <1.06 x 10(-7)). In additional analyses in 7,278 participants,Peer reviewe
    corecore