205 research outputs found

    Interaction of dense dense shelf water cascading and open-sea convection in the Northwestern Mediterranean during winter 2012

    Get PDF
    Durrieu de Madron, Xavier ... et al.-- European Geosciences Union General Assembly 2013, 7-12 April, Vienna, AustriaThe winter of 2012 experienced peculiar atmospheric conditions that triggered a massive formation of dense water on the continental shelf and in the deep basin of the Gulf of Lions. Multi-platforms observations enabled, with an unprecedented resolution, a synoptic view of dense water formation and spreading at basin scale. Five months after its formation, the dense water of coastal origin created a distinct bottom layer up to few hundreds of meters thick over the central part of the NW Mediterranean basin, which was overlaid by a layer of newly formed deep water produced by open-sea convection. These observations highlight the role of intense episodes of both dense shelf water cascading and open-sea convection to the alteration of the characteristics of the NW Mediterranean deep watersPeer Reviewe

    Glider and satellite monitoring of the variability of the suspended particle distribution and size in the Rhône ROFI

    Get PDF
    An experiment was carried out in the Gulf of Lions (NW Mediterranean) in February 2014 to assess the temporal and spatial variability of the distribution and size of suspended particulate matter (SPM) in the Rhône Region of Freshwater Influence (ROFI). A set of observations from an autonomous underwater glider, satellite ocean color data, and meteorological and hydrological time-series data highlighted the high variability of the Rhône River surface turbid plume and presence of a bottom nepheloid layer (BNL) that depended on wind and river discharge conditions. While continental winds pushed the surface plume offshore, marine winds pressed the plume at the coast and favored the sedimentation of as well as nourishment of the BNL. Moderate storm events favored breakage of the plume stratification and along-shelf transport of Rhône River particles. The spectral slopes of glider and satellite-derived light backscattering coefficients, γ, were used as a proxies of the SPM size distribution. The results clearly showed that the change of the SPM size in the nepheloid layers was induced by the flocculation of fine sediments, which became finer seaward throughout the ROFI, as well as the effect of rough weather in the breakup of flocs

    Glider and satellite monitoring of the variability of the suspended particle distribution and size in the Rhône ROFI

    Get PDF
    An experiment was carried out in the Gulf of Lions (NW Mediterranean) in February 2014 to assess the temporal and spatial variability of the distribution and size of suspended particulate matter (SPM) in the Rhône Region of Freshwater Influence (ROFI). A set of observations from an autonomous underwater glider, satellite ocean color data, and meteorological and hydrological time-series data highlighted the high variability of the Rhône River surface turbid plume and presence of a bottom nepheloid layer (BNL) that depended on wind and river discharge conditions. While continental winds pushed the surface plume offshore, marine winds pressed the plume at the coast and favored the sedimentation of as well as nourishment of the BNL. Moderate storm events favored breakage of the plume stratification and along-shelf transport of Rhône River particles. The spectral slopes of glider and satellite-derived light backscattering coefficients, γ, were used as a proxies of the SPM size distribution. The results clearly showed that the change of the SPM size in the nepheloid layers was induced by the flocculation of fine sediments, which became finer seaward throughout the ROFI, as well as the effect of rough weather in the breakup of flocs

    Impact of oceanic floods on particulate metal inputs to coastal and deep-sea environments: A case study in the NW Mediterranean Sea

    Get PDF
    An exceptional flood event, accompanying a marine storm, was investigated simultaneously at the entrance and the exit of the Gulf of Lion's hydrosystem (NW Mediterranean) in December 2003. Cs, Cr, Co, Ni, Cu, Zn, Cd and Pb signatures of both riverine and shelf-exported particles indicate that continental inputs and resuspended prodeltaic sediments were intensively mixed with resuspended sediments from middle/outer shelf areas during advective transport. As a result, particles leaving the Gulf of Lion inherited the mean signature of shelf bottom sediments, exporting anthropogenic Pb and Zn out into the open sea. When assessing the particulate metal budget in relation with the event, it appears that the output fluxes accounted for between 15% and 60% of the input fluxes, depending on the element and the period of reference. This trend is also observed for annual budgets, which were drawn up by compiling the data from this study and the literature. Results evidenced that, except some element fluxes during extreme output scenario, outputs never counter-balance the inputs. In its current functioning, the Gulf of Lion's shelf seems to act as a retention/sink zone for particulate metals. Regarding anthropogenic fluxes, the contribution of the oceanic flood of December 2003 to the mean annual scenario is considerable. Environmental impacts onto coastal and deep-sea ecosystems should therefore tightly depend on both the intensity and the frequency of event-dominated sediment transport

    Deflection of natural oil droplets through the water column in deep-water environments: The case of the Lower Congo Basin

    Get PDF
    International audienceNumerous recurrent seep sites were identified in the deep-water environment of the Lower Congo Basin from the analysis of an extensive dataset of satellite-based synthetic-aperture radar images. The integration of current data was used to link natural oil slicks with active seep-related seafloor features. Acoustic Doppler current profiler measurements across the water column provided an efficient means to evaluate the horizontal deflection of oil droplets rising through the water column. Eulerian propagation model based on a range of potential ascension velocities helped to approximate the path for rising oil plume through the water column using two complementary methods. The first method consisted in simulating the reversed trajectory of oil droplets between sea-surface oil slick locations observed during current measurements and seep-related seafloor features while considering a range of ascension velocities. The second method compared the spatial spreading of natural oil slicks from 21 years of satellite monitoring observations for water depths ranging from 1200 to 2700 m against the modeled deflections during the current measurement period. The mapped oil slick origins are restricted to a 2.5 km radius circle from associated seep-related seafloor features. The two methods converge towards a range of ascension velocities for oil droplets through the water column, estimated between 3 and 8 cm s-1. The low deflection values validate that the sub-vertical projection of the average surface area of oil slicks at the sea surface can be used to identify the origin of expelled hydrocarbon from the seafloor, which expresses as specific seafloor disturbances (i.e. pockmarks or mounds) known to expel fluids

    Transfer of particulate matter from the Northwestern Mediterranean continental margin: Variability and controlling factors

    Get PDF
    International audienceLong-term observations of monthly downward particle fluxes and hourly currents and temperaturewere initiated in 1993 in two canyons of the continental margin of the Gulf of Lion. The goals of thissurvey were to estimate its contribution to the CO 2 global budget and to understand the role offorcing factors in the control of present-day particle exchange across this margin. A previousstatistical analysis of the long-term time series suggested that variability in the transfer of particulatematter to the deep ocean could be the result of the effect of the meandering of the Northern Currentand by dense water formation in winter rather than variations in the sources of matter. Numericalsimulations have been carried out to consider these hypotheses. A model is used to examine theimpact of local atmospheric forcing (wind stress, heat fluxes, precipitation–evaporation budget) onthe variability of the oceanic circulation and of mass fluxes within the canyons from December toApril, for five consecutive years between 1996 and 2001. Results show an east-west gradient of massexport on the shelf and a positive correlation between anomalies of dense water formation rates andinterannual variability of particle fluxes. However, in the eastern part of the Gulf, the simulated massexport from the shelf is not significant, even during a winter of strong convection, when the measuredparticle fluxes are at maxima. Moreover, although the model suggests that the dense water formationcould be the major hydrodynamic forcing factor, this process is not sufficient to completely explainthe space and time variations of observed particle fluxes, especially at depth

    Glider-based active acoustic monitoring of currents and turbidity in the coastal zone

    Get PDF
    The recent integration of Acoustic Doppler Current Profilers (ADCPs) onto underwater gliders changes the way current and sediment dynamics in the coastal zone can be monitored. Their endurance and ability to measure in all weather conditions increases the probability of capturing sporadic meteorological events, such as storms and floods, which are key elements of sediment dynamics. We used a Slocum glider equipped with a CTD (Conductivity, Temperature, Depth), an optical payload, and an RDI 600 kHz phased array ADCP. Two deployments were carried out during two contrasting periods of the year in the Rhone River region of freshwater influence (ROFI). Coastal absolute currents were reconstructed using the shear method and bottom tracking measurements, and generally appear to be in geostrophic balance. The responses of the acoustic backscatter index and optical turbidity signals appear to be linked to changes of the particle size distribution in the water column. Significantly, this study shows the interest of using a glider-ADCP for coastal zone monitoring. However, the comparison between suspended particulate matter dynamics from satellites and gliders also suggests that a synoptic view of the processes involved requires a multiplatform approach, especially in systems with high spatial and temporal variability, such as the Rhone ROFI area

    Particle dynamics in Ushuaia Bay (Tierra del Fuego)-Potential effect on dissolved oxygen depletion

    Get PDF
    This study examines the distribution and seasonal evolution of hydrographic, hydrodynamic, and nepheloid layers in Ushuaia Bay and the submerged glacial valley that connects it to the Beagle Channel. The hydrographic structure is highly seasonal, with a total mixing of the water column in winter and the appearance of a pycnocline between 50 and 70 m deep from spring to late autumn, mainly due to desalination. A counter-clockwise current sweeps the entire bay regardless of the season or phase of the tide. This current is at its maximum in the surface layer, allowing the rapid renewal of the bay's waters, while deep currents are weak and imply a slow renewal of the valley's waters. Turbid and oxygen-depleted structures are observed in summer in the valley. The combination of seasonal stratification, high organic matter inputs from planktonic production, oxygen consumption for remineralization, and sluggish circulation results in a decrease in near-bottom oxygen concentration in the glacial valley at the end of the stratified season, before mixing and re-oxygenation of the water column during the southern winter. The possible impact of dissolved oxygen depletion in the bottom waters of the valley on benthic organisms, like crustaceans, is discussed.Fil: Flores Melo, Elizabeth Ximena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas; ArgentinaFil: Martín de Nascimento, Jacobo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas; ArgentinaFil: Kerdel, Lounes. Centre National de la Recherche Scientifique; FranciaFil: François, Bourrin. Centre National de la Recherche Scientifique; FranciaFil: Colloca, Cristina Beatriz. Universidad Nacional de Tierra del Fuego. Instituto de Ciencias Polares, Recursos Naturales y Ambiente; ArgentinaFil: Menniti, Chirstophe. Centre National de la Recherche Scientifique; FranciaFil: Durrieu de Madron, Xavier. Centre National de la Recherche Scientifique; Franci

    Sediment transport to the deep canyons and open-slope of the western Gulf of Lions during the 2006 intense cascading and open-sea convection period

    Get PDF
    An array of mooring lines deployed between 300 and 1900 m depth along the Lacaze-Duthiers and Cap de Creus canyons and in the adjacent southern open slope was used to study the water and sediment transport on the western Gulf of Lions margin during the 2006 intense cascading period. Deep-reaching cascading pulses occurred in early January, in late January and from early March to mid-April. Dense water and sediment transport to the deep environments occurred not only through submarine canyons, but also along the southern open slope. During the deep cascading pulses, temporary upper and mid-canyon and open slope deposits were an important source of sediment to the deep margin. Significant sediment transport events at the canyon head only occurred in early January because of higher sediment availability on the shelf after the stratified and calm season, and in late February because of the interaction of dense shelf water cascading with a strong E-SE storm. During the January deep cascading pulses, increases in suspended sediment concentration within the canyon were greater and earlier at 1000 m depth than at 300 m depth, whereas during the March-April deep cascading pulses sediment concentration only increased below 300 m depth, indicating resuspension and redistribution of sediments previously deposited at upper and mid-canyon depths. Deeper than 1000 m depth, net fluxes show that most of the suspended sediment left the canyon and flowed along the southern open slope towards the Catalan margin, whereas a small part flowed down-canyon and was exported basinward. Additionally, on the mid- and lower-continental slope there was an increase in the near-bottom currents induced by deep open-sea convection processes and the propagation of eddies. This, combined with the arrival of deep cascading pulses, also generated moderate suspended sediment transport events in the deeper slope regions

    Major consequences of an intense dense shelf water cascading event on deep-sea benthic trophic conditions and meiofaunal biodiversity

    Get PDF
    Numerous submarine canyons around the world are preferential conduits for episodic dense shelf water cascading (DSWC), which quickly modifies physical and chemical ambient conditions while transporting large amounts of material towards the base of slope and basin. Observations conducted during the last 20 yr in the Lacaze-Duthiers and Cap de Creus canyons (Gulf of Lion, NW Mediterranean Sea) report several intense DSWC events. The effects of DSWC on deep-sea ecosystems are almost unknown. To investigate the effects of these episodic events, we analysed changes in the meiofaunal biodiversity inside and outside the canyon. Sediment samples were collected at depths varying from ca. 1000 to > 2100 m in May 2004 (before a major event), April 2005 (during a major cascading event) and in October 2005, August 2006, April 2008 and April 2009 (after a major event). We report here that the late winter-early spring 2005 cascading led to a reduction of the organic matter contents in canyon floor sediments down to 1800 m depth, whereas surface sediments at about 2200 m depth showed an increase. Our findings suggest that the nutritional material removed from the shallower continental shelf, canyon floor and flanks, and also the adjacent open slope was rapidly transported to the deep margin. During the cascading event the meiofaunal abundance and biodiversity in the studied deep-sea sediments were significantly lower than after the event. Benthic assemblages during the cascading were significantly different from those in all other sampling periods in both the canyon and deep margin. After only six months from the cessation of the cascading, benthic assemblages in the impacted sediments were again similar to those observed in other sampling periods, thus illustrating a quick recovery. Since the present climate change is expected to increase the intensity and frequency of these episodic events, we anticipate that they will increasingly affect benthic bathyal ecosystems, which may eventually challenge their resilience
    corecore