167 research outputs found

    Evolution of Galaxy Luminosity Function and Luminosity Function by Density Environment at 0.03<z<0.5

    Get PDF
    Using galaxy sample observed by the BATC large-field multi-color sky survey and galaxy data of SDSS in the overlapped fields, we study the dependence of the restframe rr-band galaxy luminosity function on redshift and on large-scale environment. The large-scale environment is defined by isodensity contour with density contrast \delta\rho/\rho. The data set is a composite sample of 69,671 galaxies with redshifts 0.03 < z < 0.5 and r < 21.5 mag. The redshifts are composed by three parts: 1) spectroscopic redshifts in SDSS for local and most luminous galaxies; 2) 20-color photometric redshifts derived from BATC and SDSS; 3) 5-color photometric redshifts in SDSS. We find that the faint-end slope \alpha steepens slightly from -1.21 at z ~ 0.06 to -1.35 at z ~ 0.4, which is the natural consequence of the hierarchical formation of galaxies. The luminosity function also differs with different environments. The value of \alpha changes from -1.21 at underdense regions to -1.37 at overdense regions and the corresponding M* brightens from -22.26 to -22.64. This suggests that the fraction of faint galaxies is larger in high density regions than in low density regions.Comment: 7 pages, 9 figures, accepted by Ap

    Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk.

    Get PDF
    Blood pressure is a heritable trait influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (≥140 mm Hg systolic blood pressure or  ≥90 mm Hg diastolic blood pressure). Even small increments in blood pressure are associated with an increased risk of cardiovascular events. This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention

    Growth of catalyst-free high-quality ZnO nanowires by thermal evaporation under air ambient

    Get PDF
    ZnO nanowires have been successfully fabricated on Si substrate by simple thermal evaporation of Zn powder under air ambient without any catalyst. Morphology and structure analyses indicated that ZnO nanowires had high purity and perfect crystallinity. The diameter of ZnO nanowires was 40 to 100 nm, and the length was about several tens of micrometers. The prepared ZnO nanowires exhibited a hexagonal wurtzite crystal structure. The growth of the ZnO nanostructure was explained by the vapor-solid mechanism. The simplicity, low cost and fewer necessary apparatuses of the process would suit the high-throughput fabrication of ZnO nanowires. The ZnO nanowires fabricated on Si substrate are compatible with state-of-the-art semiconductor industry. They are expected to have potential applications in functional nanodevices

    Obesity related methylation changes in DNA of peripheral blood leukocytes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite evidence linking obesity to impaired immune function, little is known about the specific mechanisms. Because of emerging evidence that immune responses are epigenetically regulated, we hypothesized that DNA methylation changes are involved in obesity induced immune dysfunction and aimed to identify these changes.</p> <p>Method</p> <p>We conducted a genome wide methylation analysis on seven obese cases and seven lean controls aged 14 to 18 years from extreme ends of the obesity distribution and performed further validation of six CpG sites from six genes in 46 obese cases and 46 lean controls aged 14 to 30 years.</p> <p>Results</p> <p>In comparison with the lean controls, we observed one CpG site in the UBASH3A gene showing higher methylation levels and one CpG site in the TRIM3 gene showing lower methylation levels in the obese cases in both the genome wide step (<it>P </it>= 5 × 10<sup>-6 </sup>and <it>P </it>= 2 × 10<sup>-5 </sup>for the UBASH3A and the TRIM3 gene respectively) and the validation step (<it>P </it>= 0.008 and <it>P </it>= 0.001 for the UBASH3A and the TRIM3 gene respectively).</p> <p>Conclusions</p> <p>Our results provide evidence that obesity is associated with methylation changes in blood leukocyte DNA. Further studies are warranted to determine the causal direction of this relationship as well as whether such methylation changes can lead to immune dysfunction.</p> <p>See commentary: <url>http://www.biomedcentral.com/1741-7015/8/88/abstract</url></p

    Evolution of Plant Nucleotide-Sugar Interconversion Enzymes

    Get PDF
    Nucleotide-diphospho-sugars (NDP-sugars) are the building blocks of diverse polysaccharides and glycoconjugates in all organisms. In plants, 11 families of NDP-sugar interconversion enzymes (NSEs) have been identified, each of which interconverts one NDP-sugar to another. While the functions of these enzyme families have been characterized in various plants, very little is known about their evolution and origin. Our phylogenetic analyses indicate that all the 11 plant NSE families are distantly related and most of them originated from different progenitor genes, which have already diverged in ancient prokaryotes. For instance, all NSE families are found in the lower land plant mosses and most of them are also found in aquatic algae, implicating that they have already evolved to be capable of synthesizing all the 11 different NDP-sugars. Particularly interesting is that the evolution of RHM (UDP-L-rhamnose synthase) manifests the fusion of genes of three enzymatic activities in early eukaryotes in a rather intriguing manner. The plant NRS/ER (nucleotide-rhamnose synthase/epimerase-reductase), on the other hand, evolved much later from the ancient plant RHMs through losing the N-terminal domain. Based on these findings, an evolutionary model is proposed to explain the origin and evolution of different NSE families. For instance, the UGlcAE (UDP-D-glucuronic acid 4-epimerase) family is suggested to have evolved from some chlamydial bacteria. Our data also show considerably higher sequence diversity among NSE-like genes in modern prokaryotes, consistent with the higher sugar diversity found in prokaryotes. All the NSE families are widely found in plants and algae containing carbohydrate-rich cell walls, while sporadically found in animals, fungi and other eukaryotes, which do not have or have cell walls with distinct compositions. Results of this study were shown to be highly useful for identifying unknown genes for further experimental characterization to determine their functions in the synthesis of diverse glycosylated molecules

    Aberrant Expression of Proteins Involved in Signal Transduction and DNA Repair Pathways in Lung Cancer and Their Association with Clinical Parameters

    Get PDF
    Because cell signaling and cell metabolic pathways are executed through proteins, protein signatures in primary tumors are useful for identifying key nodes in signaling networks whose alteration is associated with malignancy and/or clinical outcomes. This study aimed to determine protein signatures in primary lung cancer tissues.We analyzed 126 proteins and/or protein phosphorylation sites in case-matched normal and tumor samples from 101 lung cancer patients with reverse-phase protein array (RPPA) assay. The results showed that 18 molecules were significantly different (p<0.05) by at least 30% between normal and tumor tissues. Most of those molecules play roles in cell proliferation, DNA repair, signal transduction and lipid metabolism, or function as cell surface/matrix proteins. We also validated RPPA results by Western blot and/or immunohistochemical analyses for some of those molecules. Statistical analyses showed that Ku80 levels were significantly higher in tumors of nonsmokers than in those of smokers. Cyclin B1 levels were significantly overexpressed in poorly differentiated tumors while Cox2 levels were significantly overexpressed in neuroendocrinal tumors. A high level of Stat5 is associated with favorable survival outcome for patients treated with surgery.Our results revealed that some molecules involved in DNA damage/repair, signal transductions, lipid metabolism, and cell proliferation were drastically aberrant in lung cancer tissues, and Stat5 may serve a molecular marker for prognosis of lung cancers
    corecore