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Abstract

Although the field of automatic speaker or speech recognition has been extensively studied over the past decades,
the lack of robustness has remained a major challenge. The missing data technique (MDT) is a promising approach.
However, its performance depends on the correlation across frequency bands. This paper presents a new
reconstruction method for feature enhancement based on the trait. In this paper, the degree of concentration across
frequency bands is measured with principal component analysis (PCA). Through theoretical analysis and experimental
results, it is found that the correlation of the feature vector extracted from the sub-band (SB) is much stronger than
the ones extracted from the full-band (FB). Thus, rather than dealing with the spectral features as a whole, this paper
splits full-band into sub-bands and then individually reconstructs spectral features extracted from each SB based on
MDT. At the end, those constructed features from all sub-bands will be recombined to yield the conventional
mel-frequency cepstral coefficient (MFCC) for recognition experiments. The 2-sub-band reconstruction approach is
evaluated in speaker recognition system. The results show that the proposed approach outperforms full-band
reconstruction in terms of recognition performance in all noise conditions. Finally, we particularly discuss the optimal
selection of frequency division ways for the recognition task. When FB is divided into much more sub-bands, some of
the correlations across frequency channels are lost. Consequently, efficient division ways need to be investigated to
perform further recognition performance.

Keywords: Robustness; Missing data technique (MDT); Reconstruction; Sub-band (SB); Full-band (FB);
Principal component analysis (PCA)

1 Introduction
The performance of speaker or speech recognition
systems degrades rapidly when they operate under con-
ditions that differ from those used for training. There-
fore, accomplishing noise robustness is a key issue to
make these systems deployable in real world conditions.
Solutions have been presented to solve this issue, such
as feature-based [1-3], score-based [4,5], model-based
[6-8], i-vectors [9], and the missing data technique (MDT)
[10-12].
MDT can compensate for disturbances of the arbitrated

type, so that this method which is based on the time-
frequency representation is suitable to the problem of
noise mismatch [12].
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InMDT, two different methods have been considered to
perform speech or speaker recognition with incomplete
data: marginalization [13-15] and reconstruction [16,17].
In marginalization, the unreliable components are dis-
carded or integrated up to the observed values. While
the reconstruction method involves the estimation of
the corrupted features using statistical methods, such as
minimum mean square error (MMSE) [10], maximum
a posteriori (MAP), and maximum likelihood (ML).
Marginalization [11,14] and reconstruction [10] have
been applied in speaker recognition system. However,
marginalization suffers from two main drawbacks [17,18].
First, as known to us, utterance-level processing, such as
mean and variance normalization, is capable of improving
the recognition performance, but it cannot be performed
with an incomplete spectrum [18]. Second, recognition
has been carried out with spectral features. However, it
is well known that cepstral features outperform spectral
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ones. Moreover, of all the methods, marginalization is
assumed to have the most overhead. Consequently, if
the complete reconstructed spectrogram is available, the
recognizer is no longer constrained to perform recog-
nition using spectral features. A more optimal set of
parameters from the reconstructed spectrum will be
derived.
In this paper, MAP reconstruction method [10] is

used. Its efficiency significantly depends on the correla-
tion between the spectral features. Conventional MAP
reconstruction method is conducted on full-band [18,19].
According to our analysis, the spectral vectors extracted
from the sub-band have more relevance than the ones
extracted from the full-band. The conclusion will be illus-
trated in Section 2. Based on the above theory and the
sub-band idea [20-22], a multi-sub-band reconstruction
approach is proposed to improve on the recognition per-
formance. The principle is to divide the full-band into
multiple sub-bands and then independently reconstruct
missing features extracted from every sub-band. After
that, those features from all sub-bands will be recombined
to yield the typical mel-frequency cepstral coefficient
(MFCC) vector.
As one of many feature enhancement methods, the pro-

posed reconstruction approach can be used in speaker and
speech recognition system. To evaluate its validity, this
paper will combine the new reconstruction method with
speaker recognition system.
This paper is organized as follows. In the next section,

the theory of the proposed reconstruction approach is
analyzed. Section 3 is devoted to describing the proposed
reconstruction approach. Section 4 describes the base-
line experiment system and the experimental framework
which is adopted to evaluate the proposed technique.
Finally, Section 5 concludes this paper and discusses some
future directions.

2 The analysis of concentration
As we know, the more concentrated the feature vector is,
the higher its redundancy is, that is, the greater its correla-
tion is [23]. It is measured by the degree of concentration
with principal component analysis (PCA) .
In this paper, the P-dimensional mel log-spectral vec-

tor is used for reconstruction. Mel filters are used to
represent a frame spectrum as a log-spectral vector of
P-dimensional (termed as full-band feature vector). The
frequency region (0, fs/2) is divided into C sub-bands. Let
Pi denote the number of mel filters corresponding to the
ith sub-band. Apparently,

C∑
i=1

Pi = P (1)

Corresponding to the tth frame and ith sub-band, the
output of mel filters (termed as the ith sub-band feature
vector) is represented as follows:

−→Y t
i = (y(1, t), · · ·y(Pi, t))T (2)

In order to analyze the degree of concentration of the
feature vector −→Y t

i , the eigenvalues of associated covari-
ance matrix �i need to be calculated and then need
to be arranged in descending order. It is represented as[
λi,1, λi,2, · · ·λi,Pi

]
.

To learn how closely the ith sub-band feature vector −→Y t
i

is in the space of the Pi-dimension, the so-called concen-
tration levelMi

R(r) is introduced and computed as follows:

Ri(m) =
∑m

i=1 λi,l∑Pi
i=1 λi,l

,m = 1, 2, · · ·Pi (3)

Mi
R(r) = argmin

m
(Ri(m) > r) (4)

That is, Ri(m) is the accumulative contribution rate
of the first m principle components. Concentration level
Mi

R(r) is the minimum m that makes Ri(m) > r, where r
is a predefined concentration coefficient.
For certain r, a smaller Mi

R(r) implies that the ith sub-
band feature vector is confined along a smaller number
of principle directions, and therefore, the feature vector is
much more closely related to each other according to the
above definition.
In the same manner, the degree of concentration of the

full-band feature vector could be analyzed.
The accumulative contribution rate of the first m prin-

ciple components corresponding to the 4-sub-band and
full-band is shown in Figure 1. The conclusion should
be clear. The concentration level corresponding to each
sub-band in the 4-sub-band is smaller than the one corre-
sponding to the full-band.
The correlation between the redundancy and accuracy

of the prediction is best visualized using 2-dimensional
examples as shown in Figure 2. The 2-dimensional exam-
ples involve the feature vector extracted from clean
and noisy utterances, together with MAP reconstruction
obtained for the noisy utterance. Babble noise at 0 dB
signal-to-noise ratio (SNR) has been added to obtain the
noisy utterance. Panels (a) and (b), respectively, reflect
a range of 2-dimensional feature vectors with different
redundancies. The redundancy of data in panel (b) is
lower than that in panel (a). The reconstruction data cor-
responding to the data with high redundancy and low
redundancy is defined along the first principle direction
and scattered. In short, the fatter the cloud is, the lower
the prediction accuracy is in a 2-dimensional case.
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Figure 1 The accumulative contribution rate of the firstm principle components corresponding to the 4-sub-band and full-band.

Figure 3 shows the contribution rate of two princi-
ple components which are obtained from the covariance
matrix of the 2-dimensional feature vector. When the
value of the predefined concentration coefficient r is 0.9,
the concentration level which is corresponding to the data
shown in Figure 2a,b is M(high)

R (r) = 1 and M(low)
R (r) = 2,

respectively.

Considering the recorded positions of the 2-
dimensional feature vector in Figure 2 and the
corresponding contribution rate, together with our anal-
ysis, the following conclusion is obtained: the higher the
redundancy of the data is, that is, the greater its corre-
lation is, the smaller the corresponding concentration
level is. As MAP reconstruction method is based on
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Figure 2 A spectrum of redundancies in data from the two separate recordings r1 and r2. The best-fit line is indicated by the dashed lines for
(a) high redundancy and (b) low redundancy.
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Figure 3 The contribution rate of two principle components in a 2-dimensional case.

the correlation between the feature vectors, the smaller
the concentration level is, the higher the validity of the
reconstruction is.

3 Multi-sub-band reconstruction for speaker
recognition system

As one of many feature enhancement methods, the
multi-sub-band reconstruction method in MDT can
be applied in the Gaussian mixture model (GMM)
[24], the SVM-GMM [25], and the universal back-
ground model (UBM)-GMM recognition system. Based
on the validity of the UBM-GMM system shown in
[11], the proposed reconstruction method is evaluated
in a UBM-GMM speaker recognition system. In this
section, the MDT-based speaker recognition system is
described.

3.1 UBM-GMMmodel
In this paper, a speaker-independent UBM is used. A
speaker-dependent model can be derived from UBM
by adapting the UBM parameters to the speech mate-
rial of the corresponding speaker using MAP estimation
[11,26].

3.2 Feature vector
Mel log-spectral vector and MFCC are used in the re-
construction and recognition stage, respectively. The
unreliable components are reconstructed based on the
statistical relationship between the log-spectral vector.

3.3 Mask estimation
In order to performMDT, a mask must be required which
classifies the time-frequency (T-F) units into reliable
and unreliable components. Various strategies have been
proposed to estimate a mask, such as SNR-based esti-
mation [27], auditory and perceptual estimation [14,28],
classifier-based estimation [29], and DNN-based estima-
tion [30]. It is, however, outside the scope of this paper to
analyze and compare all existing approaches. Because the
focus of this paper is to robustly identify speakers in the
presence of noise, the mask m(t, k) is determined by esti-
mating the local SNR in individual T-F units. SNR-based
mask estimation method is applied to decide whether a
T-F unit is reliable.

m(t, k) =
⎧⎨
⎩ 0, if

∣∣∣∣−̂→S (t, k)
∣∣∣∣2 ≤

∣∣∣∣−̂→N (t, k)
∣∣∣∣2

1, otherwise
(5)

where
∣∣∣∣−̂→S (t, k)

∣∣∣∣2 and
∣∣∣∣−̂→N (t, k)

∣∣∣∣2 represent the kth fre-

quency bands of the power spectrum of speech and noise,
respectively, in individual T-F units. What calls for spe-
cial attention is that the estimation of speech and noise
components is carried out in the spectral domain before
applying mel filter.
The estimate of the noise spectrum is derived from the

noisy signal spectrum. The estimationmethod is shown in

[31]. The estimate of the speech spectrum
∣∣∣∣−̂→S (t, k)

∣∣∣∣2 can
be derived by subtracting the estimated noise spectrum
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∣∣∣∣−̂→N (t, k)
∣∣∣∣2 from the corrupted signal spectrum. In this

paper, the technique to accomplish this is to perform
spectral subtraction by applying an SNR-dependent gain
function MMSE log-STSA [32] in the frequency domain.

3.4 MAP estimation for unreliable components
In MAP estimation, the unreliable components are esti-
mated by making their likelihood condition on the reliable
components [18] be maximum.

−̂→x u = argmax−→x u
p

(−→x u|−→x r ,−→μ ,�
)

(6)

A feature vector −→x ∈ �Pj∗1 is divided into reliable
and unreliable components based on SNR-based mask
estimation method.

−→xr ∈ �D1∗1 −→xu ∈ �D2∗1,D1 + D2 = Pj (7)

−→x = [−→x r ,−→x u
]

(8)
assuming that p

(−→x ;−→μ ,�
)
is the probability distribution

function (pdf) of a Gaussian distribution with mean vec-
tor μ and covariance matrix �. According to the nature
of Gaussian distribution, p

(−→x r ;−→μ ,�
)
and p

(−→x u;−→μ ,�
)

would therefore also be Gaussian [33]. Consequently,
−→μ = [−→μ r ,−→μ u

]
(9)

� =
[

�rr �ru
�ur , �uu

]
(10)

p
(−→x r ,−→μ r ,�rr

) = C1exp
[
−0.5

(−→x r − −→μ r
)T

�−1
rr

(−→x r − −→μ r
)]

(11)

p
(−→x u,−→x r ,−→μ ,�

) = C2exp
[
−0.5

(−→x − −→μ )T
�−1 (−→x − −→μ )]

(12)

where �ru is the cross covariance between−→x r and −→x u
and �ru = �T

ur .
It can now be shown that p

(−→x u|−→x r ,−→μ ,�
)
is given by

p
(−→x u|−→x r ,−→μ ,�

) = p(−→x u,−→x r ,−→μ ,�)
p(−→x r ,−→μ r ,�rr)

= C exp
[−0.5

(−→x u − −→μ u
) − �ur�−1

rr
(−→x r − −→μ r

)]
(13)

whereC is a normalizing constant. The following equation
can be obtained from Equations 11, 12, and 13.
−̂→x u = argmax−→x u

[
p

(−→x u|−→x r ,−→μ ,�
)] = −→μ u + �ur�

−1
rr

(−→x r − −→μ r
)

(14)

Figure 4 shows the process of reconstruction. The val-
ues of the statistical parameters such as −→μ r , −→μ u,�ur , and
�rr must be learned from the training corpus. A vector is

said to belong to the cluster that is most likely to have gen-
erated it. As the distribution of the vector is assumed to be
Gaussian, the cluster membership m̂−→x (t) of a vector

−→x (t)
is defined as

m̂−→x (t) = argmax
m

[
p

(
m|−→x (t)

)] = argmax
m

[
p

(−→x (t)|m)
p(t)

]
(15)

and then the unreliable components of the vector are
reconstructed using MAP estimation method.

3.5 The proposedmulti-sub-band reconstruction
approach

Assuming that utilizing P mel filter to smooth the N FFT
magnitude coefficients. The reconstruction is individu-
ally conducted on 2 sub-bands consisting of consecutive
channels (P/2-dimensional channels) with no band over-
lap (sub-band 1: channel 1 to P/2, sub-band 2: channel
P/2+1 to P). The reconstruction method falls neatly into
two parts as shown in Figure 5. In the first part, the statis-
tical parameters (SP) used in construction are individually
trained for different sub-bands. The steps of the second
part are as follows:

(a) The estimation of speech and noise components is
carried out in the spectral domain.

(b) A mask will be obtained which classifies the T-F
representation into reliable and unreliable
components corresponding to the frequency range of
P mel filters. The above two steps are carried out
before applying the mel filter.

(c) P mel filters are used to smooth the power spectrum
and then its logarithm is taken.

(d) The mel log-spectral vector is multiplied by the mask
estimated in step (b).

(e) The feature vector corresponding to full-band is
divided into ones corresponding to 2 sub-bands.

(f) Based on SP trained in the first part, the feature
vectors corresponding to every sub-band are
reconstructed, individually.

(g) The reconstructed vector of 2-sub-band is
recombined to yield the typical MFCC vector.

3.6 Baseline system
The system described in [11] assumes that the unre-
liable components are bounded between zero and the
observed mel log-spectrum and the mel log-spectrum is
independent, and marginalization is applied to process
the corrupted vector. The feature vector used in recogni-
tion is a P-dimensional mel log-spectrum. We compare
the performance of the proposed system with the baseline
system.
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Figure 4 Block diagram presenting estimation of missing components in a vector using MAP estimation method.

4 Experiments
New reconstruction method is evaluated on a closed set
of 30 speakers and 140 utterances per speaker. The sam-
pling frequency is 16 KHz. For each speaker, 70% of the
available speech material is randomly selected to train the
corresponding speaker model, 7% is used for training SP
for reconstruction stage, and the remaining 23% is used
for test.
In the training stage, we use a voice activity detec-

tor (VAD) based on power to ensure that silence frames
would not impact on the establishing model.
Speaker recognition performance is evaluated on a sub-

set of ten randomly selected speakers involving a total
of 30 sentences per speaker (20 sentences for training
speaker-dependent GMMand 10 sentences for testing). In
the test phase, utterances are mixed at various SNRs with
noise signals drawn from the NOISEX database [34].
Figure 6 describes evaluation system in which 24mel fil-

ters are used to smooth the spectrum and the full-band
is divided into 2 sub-bands (SB1: channel 1 to 12, SB2:
channel 13 to 24), and 34-demensional MFCC consisting

of 16 static MFCC coefficients including the 0th order
coefficient and first order temporal derivatives is used
for recognition. At the end, cepstral mean normalization
(CMN) is applied to improve robustness.

4.1 Experiment 1: performance comparison between
marginalization and reconstruction including
full-band and 2-sub-band reconstruction

In the first experiment, we compare the performances of
two systems which use the marginalization and recon-
struction methods to process the corrupted features and
then evaluate the validity of the proposed reconstruction
method. The point is that recognition has to be carried
out with spectral features in the former system. While in
the latter system, MFCC are extracted for recognition.
The DET curves visualize the trade-off between missed

detections and false alarms [35]. Figure 7 gives the recog-
nition performance of two systems in destroyer-engine
noise at a SNR of 0 dB. The results in the figure show
that cepstral features outperform spectral ones for speaker
recognition.
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Figure 5 Diagram of the proposed reconstruction method.
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Figure 8 shows that the recognition performance of the
latter system improves when reconstruction is applied
to process the corrupted features, and the recognition
accuracy of the latter system using 2-sub-band recon-
struction method is improved 5.65% more than full-band
reconstruction method.
In order to evaluate the validity of the proposed recon-

struction method in various noise types, this paper con-
ducts recognition experiments in babble, factory1, pink,
white, and destroyer-engine noise. The SNR-dependent
recognition accuracy for recognition system is presented
in Table 1. The last table depicts the average performance
over all noise conditions.
Based on the experimental results reported in Table 1,

the corresponding SNR-dependent curves are shown for
all noise types in Figures 9, 10, and 11.

The following observations can be made:

(a) It can be observed in Table 1 that the performance
obtained from both reconstruction methods clearly
outperforms the baseline system.

(b) The results show that 2-sub-band reconstruction
method performs better than full-band for all noise
types. The recognition performance is higher at a
larger SNR.

(c) The recognition performance in babble noise is
higher than the other four noise types in most cases
for two kinds of reconstruction methods.

(d) The corresponding relative improvements
regarding full-band reconstruction are 2.55%, 1.49%,
1.10%, 1.63%, and 1.03% at a SNR of 0, 5, 10, 15, and
20 dB, respectively. Recognition performance
improves the most at a SNR of 0 dB.
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Figure 7 The DET curves for two recognition systems in destroyer-engine noise at a SNR of 0 dB.
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Figure 8 The DET curves for two kinds of reconstruction methods in destroyer-engine noise at a SNR of 0 dB.

Table 1 Recognition performance of FB, 2-SB reconstruction, andmarginalization in the presence of different types of
noise (unit: %)

0 dB 5 dB 10 dB 15 dB 20 dB

Babble FB 82.60 84.02 87.01 87.49 89.49

2-SB 82.96 85.30 87.84 89.30 91.25

Marginalization 63.71 64.88 66.44 67.69 69.75

Factory1 FB 76.52 82.10 87.40 88.00 88.33

2-SB 80.01 82.25 87.70 89.13 90.23

Marginalization 67.54 68.10 68.33 68.51 69.40

Pink FB 75.12 80.78 84.83 87.55 89.11

2-SB 76.66 82.43 87.40 89.62 90.27

Marginalization 67.79 68.54 69.00 69.06 69.91

White FB 77.10 83.02 84.40 87.16 89.71

2-SB 78.81 83.60 86.09 88.70 89.82

Marginalization 68.00 68.92 70.21 70.77 71.21

Destroyer-engine FB 76.51 82.81 86.43 86.29 88.47

2-SB 82.16 86.60 86.52 87.92 88.68

Marginalization 66.64 67.26 68.30 68.48 69.97

Average FB 77.57 82.55 86.01 87.30 89.02

2-SB 80.12 84.04 87.11 88.93 90.05

Marginalization 66.74 67.54 68.46 68.90 70.05
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Figure 9 SNR-dependent speaker recognition performance in babble and factory1 noise.

(e) The improved recognition performance is 6.04%,
6.97%, 8.99%, 5.63%, and 11.37% in babble, factory1,
pink, white, and destroyer-engine noise, respectively.
Recognition performance improves the most in
destroyer-engine noise.

We analyze the relationship between reconstruction per-
formance and the correlation of the feature vector with
PCA. Table 2 shows the contribution rate of every
principle component. When the value of concentration
coefficient r is 0.95, the corresponding concentration
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Figure 10 SNR-dependent speaker recognition performance in pink and white noise.
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Figure 11 SNR-dependent speaker recognition performance in destroyer-engine noise and average condition.

levels are MFB
R (r) = 10, M1

R(r) = 6, and M2
R(r) = 5.

Based on the conclusion shown in Section 2, a smaller
Mi

R(r) implies a stronger concentration for the fea-
ture vector. Consequently, since the correlation of every
sub-band is stronger than the full-band, the perfor-
mance of the 2-sub-band reconstruction approach is
better.
The result of PCA will be obtained by decompos-

ing eigenvalues of the covariance matrix, which is

Table 2 The contribution rate (%) of every principle
component

FB SB1 SB2

1 50.161 69.455 66.811

2 22.291 13.475 17.025

3 6.935 3.292 6.812

4 5.236 2.315 3.084

5 3.424 2.315 2.051

6 1.945 2.139 1.345

7 1.708 1.514 0.951

8 1.218 1.185 0.715

9 1.125 0.898 0.490

10 1.002 0.651 0.327

11 0.869 0.445 0.233

12 0.698 0.240 0.157

relevant to the reconstruction. The accumulative con-
tribution rate of the principle components is shown in
Figure 12.

4.2 Experiment 2: influence of different division ways of
full-band

The conclusion that the recognition performance
obtained by the proposed reconstruction method is
superior to full-band reconstruction has been obtained
in Experiment 1. The choice of an optimal division of
full-band seems to be crucial for sub-band reconstruc-
tion method. In order to find the optimal division, this
paper conducts a series of recognition experiments.
The division ways and the corresponding recognition
performance are shown in Table 3.
These experiments are conducted in babble noise which

is highly non-stationary and a SNR of 0 dB. The results are
shown in Figure 13.
The recognition performance is ranked corresponding

to different division ways starting with the highest per-
formance: 4 sub-bands, 2 sub-bands, 3 sub-bands, 8 sub-
bands, 6 sub-bands, and 12 sub-bands. The relationship
between channel number and recognition performance is
not obvious. In order to explain the relationship between
the recognition performance and the division ways, we
analyze the case of 4 sub-band and 2 sub-band. The results
are shown in Figure 14. Assume that the amount of infor-
mation presented by the original data is 100%. When
full-band is divided into 4 sub-bands, the amount of infor-
mation presented by the first four principle components
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Figure 12 Accumulative contribution rate of principle components derived from feature vectors corresponding to 2 sub-bands and
full-band.

derived from sub-band 1, sub-band 2, sub-band 3, and
sub-band 4 is 94.67%, 98.79%, 98.58%, and 98.73%, respec-
tively. However, if the full-band is divided into 2 sub-
bands, the amount of information presented by the first
four principle components derived from both sub-bands
is 90.61% and 93.73%. That is, the redundancy of the fea-
ture vector extracted from each sub-band is higher on the
condition that the full-band is divided into 4 sub-bands.
When the full-band is divided into 12 sub-bands,

the recognition performance is inferior. The observation
shows that the correlations between the feature vector are
lost when the number of sub-bands is more numerous.

5 Conclusions
This paper presents a new feature enhancement method,
which is evaluated in a UBM-GMM speaker recognition

Table 3 Different division ways of full-band and the
corresponding recognition performance

Channel Sub-bands Recognition (%)
number

12 1-2, 3-4, 5-6, 7-8, 9-10, 11-12,13-14,15-16, 74.18
17-18, 19-20, 21-22, 23-24

8 1-3, 4-6, 7-9, 10-12, 13-15, 16-18, 19-21, 22-24 78.15

6 1-4, 5-8, 9-12, 13-16, 17-20, 21-24 77.83

4 1-6, 7-12, 13-18, 19-24 84.86

3 1-8, 9-16, 17-24 81.78

2 1-12, 13-24 82.96

system. In the proposed method, the reconstruction is
executed on a partial sub-band independently and then
the reconstructed spectrum is recombined into a com-
plete spectrum to yield the conventional MFCC for recog-
nition. Compared to full-band reconstruction method,
recognition performance obtained by the proposed recon-
struction approach has been shown to be higher in five
noise types. The experiment has also reflected that the
recognition performance depends on the frequency divi-
sion ways, thus the optimal division ways need to be
developed.
The first experiment has revealed the following results.

First, MFCC features outperform spectral ones for
speaker recognition. Second, the recognition performance
obtained by reconstruction is higher than marginaliza-
tion. Third, the recognition performance obtained by the
2-sub-band reconstruction method is superior to the full-
band reconstruction in five noise types and at all SNRs.
The second experiment has shown that different fre-
quency division ways could influence on the recognition
performance.
In order to achieve further recognition performance

improvements, on the one hand, an optimal frequency
division way will be very important. On the other hand,
analyzing the distribution property of various noise types
and then accurately identifying destroyed components are
also research hot spots. In the end, research on mask
estimation algorithms is required to precisely separate
reliable from unreliable components.
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Figure 13 The recognition performance derived from different division ways.
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Figure 14 The comparison in contribution rate derived from 4 sub-bands and 2 sub-bands.
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