305 research outputs found

    Biosynthesis and characterization of bacterial cellulose membranes presenting relevant characteristics for air/gas filtration

    Get PDF
    Funding Information: This work was supported by the Associate Laboratory for Green Chemistry ─ LAQV, iNOVA4Health and the Associate Laboratory LS4FUTURE which are financed by Portuguese national funds from the Fundação para a Ciência e Tecnologia (FCT/MCTES, Portugal) ( UIDB/50006/2020 ; UIDP/50006/2020 ; UIDB/04462/2020 , UIDP/04462/2020 ; and LA/P/0087/2020 ; respectively). Arooj Fatima acknowledges FCT for PhD grant reference 2021.07557. BD. The authors acknowledge Professor Vítor D. Alves, from Instituto Superior de Agronomia, Universidade de Lisboa , for the support in the analysis of membrane mechanical properties. Funding Information: The surface area of bacterial cellulose membranes was determined using N2 adsorption/desorption isotherms and reported in Table 2. Both glucose and glycerol supported the bacterial growth that led to the production of membranes with diverse thicknesses, surface porosity and fiber diameter (Table 2). SEM images revealed that pores and fiber channels of varied sizes were present in the structure of all the bacterial cellulose membranes. Among all strains, FXV3 produced membranes with the highest surface area. Furthermore, and overall, adding ethanol made the bacterial cellulose membrane structure denser, resulting into low surface areas. Interestingly, NFXK3 showed the lowest surface area using both glucose and glycerol.This work was supported by the Associate Laboratory for Green Chemistry ─ LAQV, iNOVA4Health and the Associate Laboratory LS4FUTURE which are financed by Portuguese national funds from the Fundação para a Ciência e Tecnologia (FCT/MCTES, Portugal) (UIDB/50006/2020; UIDP/50006/2020; UIDB/04462/2020, UIDP/04462/2020; and LA/P/0087/2020; respectively). Arooj Fatima acknowledges FCT for PhD grant reference 2021.07557. BD. The authors acknowledge Professor Vítor D. Alves, from Instituto Superior de Agronomia, Universidade de Lisboa, for the support in the analysis of membrane mechanical properties. Publisher Copyright: © 2023The production of bacterial cellulose has gained prominence in recent years as an alternative for the sustainable production of materials that might be used in diverse processes and applications. The present study discusses the possibility of producing tailored bacterial cellulose membranes in situ, that present relevant characteristics for potential use in air/gas filtration. Various cultivation processes and characterization studies were performed to ascertain the suitability of Komagataeibacter sp. FXV3, Komagataeibacter sp. NFXK3, and K. intermedius LMG 18909 bacterial strains to produce cellulose membranes with diverse properties. Subsequently, the bacterial cellulose films produced were freeze-dried to obtain stable membranes, and extensively characterized for their physicochemical properties. The results obtained showed that different strains enabled the synthesis of membranes with distinctive morphological properties. Moreover, the different carbon sources and ethanol concentrations employed in the cultivation media led to modifications in the cellulose membranes produced by the different Komagataeibacter strains, which further impacted membrane morphology and, ultimately, gas filtration behavior. All the synthesized membranes were fully characterized, showing adequate mechanical properties, and tested for permeance of N2, CO2 and O2, opening perspectives for their use in air/gas filtration.publishersversionpublishe

    Spectral modeling of scintillator for the NEMO-3 and SuperNEMO detectors

    Full text link
    We have constructed a GEANT4-based detailed software model of photon transport in plastic scintillator blocks and have used it to study the NEMO-3 and SuperNEMO calorimeters employed in experiments designed to search for neutrinoless double beta decay. We compare our simulations to measurements using conversion electrons from a calibration source of 207Bi\rm ^{207}Bi and show that the agreement is improved if wavelength-dependent properties of the calorimeter are taken into account. In this article, we briefly describe our modeling approach and results of our studies.Comment: 16 pages, 10 figure

    Dependence of polytetrafluoroethylene reflectance on thickness at visible and ultraviolet wavelengths in air

    Full text link
    [EN] Polytetrafluoroethylene (PTFE) is an excellent diffuse reflector widely used in light collection systems for particle physics experiments. However, the reflectance of PTFE is a function of its thickness. In this work, we investigate this dependence in air for light of wavelengths 260 nm and 450 nm using two complementary methods. We find that PTFE reflectance for thicknesses from 5 mm to 10 mm ranges from 92.5% to 94.5% at 450 nm, and from 90.0% to 92.0% at 260 nm We also see that the reflectance of PIFE of a given thickness can vary by as much as 2.7% within the same piece of material. Finally, we show that placing a specular reflector behind the PTFE can recover the loss of reflectance in the visible without introducing a specular component in the reflectance.The NEXT Collaboration acknowledges support from the following agencies and institutions: the European Research Council (ERC) under the Advanced Grant 339787-NEXT; the European Union's Framework Programme for Research and Innovation Horizon 2020 (2014-2020) under the Grant Agreements No. 674896, 690575 and 740055; the Ministerio de Economia y Competitividad and the Ministerio de Ciencia, Innovacion y Universidades of Spain under grants FIS2014-53371-C04, RTI2018-095979, the Severo Ochoa Program grants SEV-2014-0398 and CEX2018-000867-S, and the Maria de Maeztu Program MDM-2016-0692; the Generalitat Valenciana under grants PROMETEO/2016/120 and SEJI/2017/011; the Portuguese FCT under project PTDC/FIS-NUC/2525/2014 and under projects UID/04559/2020 to fund the activities of LIBPhys-UC; the U.S. Department of Energy under contracts No. DE-AC02-06CH11357 (Argonne National Laboratory), DE-AC0207CH11359 (Fermi National Accelerator Laboratory), DE-FG02-13ER42020 (Texas A&M) and DE-SC0019223/DE-SC0019054 (University of Texas at Arlington); and the University of Texas at Arlington (USA). DGD acknowledges Ramon y Cajal program (Spain) under contract number RYC2015-18820. JM-A acknowledges support from Fundacion Bancaria "la Caixa" (ID 100010434), grant code LCF/BQ/PI19/11690012. Finally, we thank Brendon Bullard, Paolo Giromini and Neeraj Tata for helpful discussions and assistance with preliminary measurements.Ghosh, S.; Haefner, J.; Martín-Albo, J.; Guenette, R.; Li, X.; Loya Villalpando, A.; Burch, C.... (2020). Dependence of polytetrafluoroethylene reflectance on thickness at visible and ultraviolet wavelengths in air. Journal of Instrumentation. 15(11):1-17. https://doi.org/10.1088/1748-0221/15/11/P11031S1171511Auger, M., Auty, D. J., Barbeau, P. S., Bartoszek, L., Baussan, E., Beauchamp, E., … Cleveland, B. (2012). The EXO-200 detector, part I: detector design and construction. Journal of Instrumentation, 7(05), P05010-P05010. doi:10.1088/1748-0221/7/05/p05010Martín-Albo, J., Muñoz Vidal, J., Ferrario, P., Nebot-Guinot, M., Gómez-Cadenas, J. J., … Cárcel, S. (2016). Sensitivity of NEXT-100 to neutrinoless double beta decay. Journal of High Energy Physics, 2016(5). doi:10.1007/jhep05(2016)159Rogers, L., Clark, R. A., Jones, B. J. P., McDonald, A. D., Nygren, D. R., Psihas, F., … Azevedo, C. D. . (2018). High voltage insulation and gas absorption of polymers in high pressure argon and xenon gases. Journal of Instrumentation, 13(10), P10002-P10002. doi:10.1088/1748-0221/13/10/p10002Silva, C., Pinto da Cunha, J., Pereira, A., Chepel, V., Lopes, M. I., Solovov, V., & Neves, F. (2010). Reflectance of polytetrafluoroethylene for xenon scintillation light. Journal of Applied Physics, 107(6), 064902. doi:10.1063/1.3318681Haefner, J., Neff, A., Arthurs, M., Batista, E., Morton, D., Okunawo, M., … Lorenzon, W. (2017). Reflectance dependence of polytetrafluoroethylene on thickness for xenon scintillation light. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 856, 86-91. doi:10.1016/j.nima.2017.01.057Kravitz, S., Smith, R. J., Hagaman, L., Bernard, E. P., McKinsey, D. N., Rudd, L., … Sakai, M. (2020). Measurements of angle-resolved reflectivity of PTFE in liquid xenon with IBEX. The European Physical Journal C, 80(3). doi:10.1140/epjc/s10052-020-7800-6Geis, C., Grignon, C., Oberlack, U., García, D. R., & Weitzel, Q. (2017). Optical response of highly reflective film used in the water Cherenkov muon veto of the XENON1T dark matter experiment. Journal of Instrumentation, 12(06), P06017-P06017. doi:10.1088/1748-0221/12/06/p06017Allison, J., Amako, K., Apostolakis, J., Arce, P., Asai, M., Aso, T., … Barrand, G. (2016). Recent developments in Geant4. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 835, 186-225. doi:10.1016/j.nima.2016.06.12

    Design and construction of the MicroBooNE Cosmic Ray Tagger system

    Full text link
    The MicroBooNE detector utilizes a liquid argon time projection chamber (LArTPC) with an 85 t active mass to study neutrino interactions along the Booster Neutrino Beam (BNB) at Fermilab. With a deployment location near ground level, the detector records many cosmic muon tracks in each beam-related detector trigger that can be misidentified as signals of interest. To reduce these cosmogenic backgrounds, we have designed and constructed a TPC-external Cosmic Ray Tagger (CRT). This sub-system was developed by the Laboratory for High Energy Physics (LHEP), Albert Einstein center for fundamental physics, University of Bern. The system utilizes plastic scintillation modules to provide precise time and position information for TPC-traversing particles. Successful matching of TPC tracks and CRT data will allow us to reduce cosmogenic background and better characterize the light collection system and LArTPC data using cosmic muons. In this paper we describe the design and installation of the MicroBooNE CRT system and provide an overview of a series of tests done to verify the proper operation of the system and its components during installation, commissioning, and physics data-taking

    Discovery potential of xenon-based neutrinoless double beta decay experiments in light of small angular scale CMB observations

    Get PDF
    The South Pole Telescope (SPT) has probed an expanded angular range of the CMB temperature power spectrum. Their recent analysis of the latest cosmological data prefers nonzero neutrino masses, mnu = 0.32+-0.11 eV. This result, if confirmed by the upcoming Planck data, has deep implications on the discovery of the nature of neutrinos. In particular, the values of the effective neutrino mass involved in neutrinoless double beta decay (bb0nu) are severely constrained for both the direct and inverse hierarchy, making a discovery much more likely. In this paper, we focus in xenon-based bb0nu experiments, on the double grounds of their good performance and the suitability of the technology to large-mass scaling. We show that the current generation, with effective masses in the range of 100 kg and conceivable exposures in the range of 500 kg year, could already have a sizable opportunity to observe bb0nu events, and their combined discovery potential is quite large. The next generation, with an exposure in the range of 10 ton year, would have a much more enhanced sensitivity, in particular due to the very low specific background that all the xenon technologies (liquid xenon, high-pressure xenon and xenon dissolved in liquid scintillator) can achieve. In addition, a high-pressure xenon gas TPC also features superb energy resolution. We show that such detector can fully explore the range of allowed effective Majorana masses, thus making a discovery very likely

    Interim Design Report

    Get PDF
    The International Design Study for the Neutrino Factory (the IDS-NF) was established by the community at the ninth "International Workshop on Neutrino Factories, super-beams, and beta- beams" which was held in Okayama in August 2007. The IDS-NF mandate is to deliver the Reference Design Report (RDR) for the facility on the timescale of 2012/13. In addition, the mandate for the study [3] requires an Interim Design Report to be delivered midway through the project as a step on the way to the RDR. This document, the IDR, has two functions: it marks the point in the IDS-NF at which the emphasis turns to the engineering studies required to deliver the RDR and it documents baseline concepts for the accelerator complex, the neutrino detectors, and the instrumentation systems. The IDS-NF is, in essence, a site-independent study. Example sites, CERN, FNAL, and RAL, have been identified to allow site-specific issues to be addressed in the cost analysis that will be presented in the RDR. The choice of example sites should not be interpreted as implying a preferred choice of site for the facility
    corecore