67 research outputs found

    Tropical carbon sink accelerated by symbiotic dinitrogen fixation

    Get PDF
    A major uncertainty in the land carbon cycle is whether symbiotic nitrogen fixation acts to enhance the tropical forest carbon sink. Nitrogen-fixing trees can supply vital quantities of the growth-limiting nutrient nitrogen, but the extent to which the resulting carbon–nitrogen feedback safeguards ecosystem carbon sequestration remains unclear. We combine (i) field observations from 112 plots spanning 300 years of succession in Panamanian tropical forests, and (ii) a new model that resolves nitrogen and light competition at the scale of individual trees. Fixation doubled carbon accumulation in early succession and enhanced total carbon in mature forests by ~10% (~12MgC ha−1) through two mechanisms: (i) a direct fixation effect on tree growth, and (ii) an indirect effect on the successional sequence of non-fixing trees. We estimate that including nitrogen-fixing trees in Neotropical reforestation projects could safeguard the sequestration of 6.7 Gt CO2 over the next 20 years. Our results highlight the connection between functional diversity of plant communities and the critical ecosystem service of carbon sequestration for mitigating climate change

    Height-diameter allometry and above ground biomass in tropical montane forests: Insights from the Albertine Rift in Africa

    Get PDF
    Tropical montane forests provide an important natural laboratory to test ecological theory. While it is well-known that some aspects of forest structure change with altitude, little is known on the effects of altitude on above ground biomass (AGB), particularly with regard to changing height-diameter allometry. To address this we investigate (1) the effects of altitude on height-diameter allometry, (2) how different height-diameter allometric models affect above ground biomass estimates; and (3) how other forest structural, taxonomic and environmental attributes affect above ground biomass using 30 permanent sample plots (1-ha; all trees ≥ 10 cm diameter measured) established between 1250 and 2600 m asl in Kahuzi Biega National Park in eastern Democratic Republic of Congo. Forest structure and species composition differed with increasing altitude, with four forest types identified. Different height-diameter allometric models performed better with the different forest types, as trees got smaller with increasing altitude. Above ground biomass ranged from 168 to 290 Mg ha-1, but there were no significant differences in AGB between forests types, as tree size decreased but stem density increased with increasing altitude. Forest structure had greater effects on above ground biomass than forest diversity. Soil attributes (K and acidity, pH) also significantly affected above ground biomass. Results show how forest structural, taxonomic and environmental attributes affect above ground biomass in African tropical montane forests. They particularly highlight that the use of regional height-diameter models introduces significant biases in above ground biomass estimates, and that different height-diameter models might be preferred for different forest types, and these should be considered in future studies

    A starting guide to root ecology: strengthening ecological concepts and standardising root classification, sampling, processing and trait measurements

    Get PDF
    In the context of a recent massive increase in research on plant root functions and their impact on the environment, root ecologists currently face many important challenges to keep on generating cutting-edge, meaningful and integrated knowledge. Consideration of the below-ground components in plant and ecosystem studies has been consistently called for in recent decades, but methodology is disparate and sometimes inappropriate. This handbook, based on the collective effort of a large team of experts, will improve trait comparisons across studies and integration of information across databases by providing standardised methods and controlled vocabularies. It is meant to be used not only as starting point by students and scientists who desire working on below-ground ecosystems, but also by experts for consolidating and broadening their views on multiple aspects of root ecology. Beyond the classical compilation of measurement protocols, we have synthesised recommendations from the literature to provide key background knowledge useful for: (1) defining below-ground plant entities and giving keys for their meaningful dissection, classification and naming beyond the classical fine-root vs coarse-root approach; (2) considering the specificity of root research to produce sound laboratory and field data; (3) describing typical, but overlooked steps for studying roots (e.g. root handling, cleaning and storage); and (4) gathering metadata necessary for the interpretation of results and their reuse. Most importantly, all root traits have been introduced with some degree of ecological context that will be a foundation for understanding their ecological meaning, their typical use and uncertainties, and some methodological and conceptual perspectives for future research. Considering all of this, we urge readers not to solely extract protocol recommendations for trait measurements from this work, but to take a moment to read and reflect on the extensive information contained in this broader guide to root ecology, including sections I–VII and the many introductions to each section and root trait description. Finally, it is critical to understand that a major aim of this guide is to help break down barriers between the many subdisciplines of root ecology and ecophysiology, broaden researchers’ views on the multiple aspects of root study and create favourable conditions for the inception of comprehensive experiments on the role of roots in plant and ecosystem functioning

    Measurement of melatonin in body fluids: Standards, protocols and procedures

    Get PDF
    Abstract: The circadian rhythm of melatonin in saliva or plasma, or of the melatonin metabolite 6‐ sulphatoxymelatonin in urine, is a defining feature of suprachiasmatic nucleus function, the endogenous oscillatory pacemaker. These measurements are useful to evaluate problems related to the onset or offset of sleep and for assessing phase delays or advances of rhythms in entrained individuals. Additionally, they have become an important tool for psychiatric diagnosis, its use being recommended for phase typing in patients suffering from sleep and mood disorders. Thus, the development of sensitive and selective methods for the precise detection of melatonin in tissues and fluids of animals emerges as necessary. Due to its low concentration and the co‐existence of many other endogenous compounds in blood, the determination of melatonin has been an analytical challenge. This review discusses current methodologies employed for detection and quantification of melatonin in biological fluids and tissues

    Responses of arbuscular mycorrhizal fungi to long-term inorganic and organic nutrient addition in a lowland tropical forest

    Get PDF
    Improved understanding of the nutritional ecology of arbuscular mycorrhizal (AM) fungi is important in understanding how tropical forests maintain high productivity on low-fertility soils. Relatively little is known about how AM fungi will respond to changes in nutrient inputs in tropical forests, which hampers our ability to assess how forest productivity will be influenced by anthropogenic change. Here we assessed the influence of long-term inorganic and organic nutrient additions and nutrient depletion on AM fungi, using two adjacent experiments in a lowland tropical forest in Panama. We characterised AM fungal communities in soil and roots using 454-pyrosequencing, and quantified AM fungal abundance using microscopy and a lipid biomarker. Phosphorus and nitrogen addition reduced the abundance of AM fungi to a similar extent, but affected community composition in different ways. Nutrient depletion (removal of leaf litter) had a pronounced effect on AM fungal community composition, affecting nearly as many OTUs as phosphorus addition. The addition of nutrients in organic form (leaf litter) had little effect on any AM fungal parameter. Soil AM fungal communities responded more strongly to changes in nutrient availability than communities in roots. This suggests that the 'dual niches' of AM fungi in soil versus roots are structured to different degrees by abiotic environmental filters, and biotic filters imposed by the plant host. Our findings indicate that AM fungal communities are fine-tuned to nutrient regimes, and support future studies aiming to link AM fungal community dynamics with ecosystem function

    Fixing tropical forests

    No full text
    An extensive dataset indicates that nitrogen-fixing trees are most abundant in young, dry tropical forests. The finding expands the potential for natural nitrogen fertilization and carbon dioxide sequestration in areas recovering from land use
    corecore