7,868 research outputs found

    Concurrent image-guided intensity modulated radiotherapy and chemotherapy following neoadjuvant chemotherapy for locally advanced nasopharyngeal carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To evaluate the experience of induction chemotherapy followed by concurrent chemoradiationwith helical tomotherapy (HT) for nasopharyngeal carcinoma (NPC).</p> <p>Methods</p> <p>Between August 2006 and December 2009, 28 patients with pathological proven nonmetastatic NPC were enrolled. All patients were staged as IIB-IVB. Patients were first treated with 2 to 3 cycles of induction chemotherapy with EP-HDFL (Epirubicin, Cisplatin, 5-FU, and Leucovorin). After induction chemotherapy, weekly based PFL was administered concurrent with HT. Radiation consisted of 70 Gy to the planning target volumes of the primary tumor plus any positive nodal disease using 2 Gy per fraction.</p> <p>Results</p> <p>After completion of induction chemotherapy, the response rates for primary and nodal disease were 96.4% and 80.8%, respectively. With a median follow-up after 33 months (Range, 13-53 months), there have been 2 primary and 1 nodal relapse after completion of radiotherapy. The estimated 3-year progression-free rates for local, regional, locoregional and distant metastasis survival rate were 92.4%, 95.7%, 88.4%, and 78.0%, respectively. The estimated 3-year overall survival was 83.5%. Acute grade 3, 4 toxicities for xerostomia and dermatitis were only 3.6% and 10.7%, respectively.</p> <p>Conclusion</p> <p>HT for locoregionally advanced NPC is feasible and effective in regard to locoregional control with high compliance, even after neoadjuvant chemotherapy. None of out-field or marginal failure noted in the current study confirms the potential benefits of treating NPC patients by image-guided radiation modality. A long-term follow-up study is needed to confirm these preliminary findings.</p

    Development of a versatile two-photon endoscope for biological imaging

    Get PDF
    We describe a versatile, catheter-type two-photon probe, designed for in vivo and ex vivo imaging of the aqueous outflow pathway in the eye. The device consists of a silica double cladding fiber used for laser delivery and fluorescence collection, a spiral fiber scanner driven by a miniature piezoelectric tube, and an assembly of three micro-size doublet achromatic lenses used for focusing the laser and collecting the two-photon excitation signal. All the components have a maximum diameter of 2 mm and are enclosed in a length of 12-gauge stainless steel hypodermic tubing having an outer diameter of 2.8 mm. The lateral and axial resolutions of the probe are measured to be 1.5 μm and 9.2 μm, respectively. Different lens configurations and fibers are evaluated by comparing their spatial resolutions and fluorescence signal collection efficiencies. Doublet achromatic lenses and a double cladding fiber with a high inner cladding numerical aperture are found to produce a high signal collection efficiency, which is essential for imaging live tissues. Simple methods for reducing image distortions are demonstrated. Images of human trabecular meshwork tissue are successfully obtained with this miniature two-photon microscope

    Intensity modulated radiotherapy for elderly bladder cancer patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To review our experience and evaluate treatment planning using intensity-modulated radiotherapy (IMRT) and helical tomotherapy (HT) for the treatment of elderly patients with bladder cancer.</p> <p>Methods</p> <p>From November 2006 through November 2009, we enrolled 19 elderly patients with histologically confirmed bladder cancer, 9 in the IMRT and 10 in the HT group. The patients received 64.8 Gy to the bladder with or without concurrent chemotherapy. Conventional 4-field "box" pelvic radiation therapy (2DRT) plans were generated for comparison.</p> <p>Results</p> <p>The median patient age was 80 years old (range, 65-90 years old). The median survival was 21 months (5 to 26 months). The actuarial 2-year overall survival (OS) for the IMRT vs. the HT group was 26.3% <it>vs </it>.37.5%, respectively; the corresponding values for disease-free survival were 58.3% <it>vs</it>. 83.3%, respectively; for locoregional progression-free survival (LRPFS), the values were 87.5% <it>vs</it>. 83.3%, respectively; and for metastases-free survival, the values were 66.7% <it>vs</it>. 60.0%, respectively. The 2-year OS rates for T1, 2 <it>vs</it>. T3, 4 were 66.7% <it>vs</it>. 35.4%, respectively (<it>p </it>= 0.046). The 2-year OS rate was poor for those whose RT completion time greater than 8 weeks when compared with the RT completed within 8 wks (37.9% vs. 0%, <it>p </it>= 0.004).</p> <p>Conclusion</p> <p>IMRT and HT provide good LRPFS with tolerable toxicity for elderly patients with invasive bladder cancer. IMRT and HT dosimetry and organ sparing capability were superior to that of 2DRT, and HT provides better sparing ability than IMRT. The T category and the RT completion time influence OS rate.</p

    Dry-air-stable lithium silicide-lithium oxide core-shell nanoparticles as high-capacity prelithiation reagents

    Get PDF
    Rapid progress has been made in realizing battery electrode materials with high capacity and long-term cyclability in the past decade. However, low first-cycle Coulombic efficiency as a result of the formation of a solid electrolyte interphase and Li trapping at the anodes, remains unresolved. Here we report LixSi-Li2O core-shell nanoparticles as an excellent prelithiation reagent with high specific capacity to compensate the first-cycle capacity loss. These nanoparticles are produced via a one-step thermal alloying process. LixSi-Li2O core-shell nanoparticles are processible in a slurry and exhibit high capacity under dry-air conditions with the protection of a Li2O passivation shell, indicating that these nanoparticles are potentially compatible with industrial battery fabrication processes. Both Si and graphite anodes are successfully prelithiated with these nanoparticles to achieve high first-cycle Coulombic efficiencies of 94% to 4100%. The LixSi-Li2O core-shell nanoparticles enable the practical implementation of high-performance electrode materials in lithium-ion batteries.open6

    Selective patterning of ZnO nanorods on silicon substrates using nanoimprint lithography

    Get PDF
    In this research, nanoimprint lithography (NIL) was used for patterning crystalline zinc oxide (ZnO) nanorods on the silicon substrate. To fabricate nano-patterned ZnO nanorods, patterning of an n-octadecyltrichlorosilane (OTS) self-assembled monolayers (SAMs) on SiO2 substrate was prepared by the polymer mask using NI. The ZnO seed layer was selectively coated only on the hydrophilic SiO2 surface, not on the hydrophobic OTS SAMs surface. The substrate patterned with the ZnO seed layer was treated with the oxygen plasma to oxidize the silicon surface. It was found that the nucleation and initial growth of the crystalline ZnO were proceeded only on the ZnO seed layer, not on the silicon oxide surface. ZnO photoluminescence spectra showed that ZnO nanorods grown from the seed layer treated with plasma showed lower intensity than those untreated with plasma at 378 nm, but higher intensity at 605 nm. It is indicated that the seed layer treated with plasma produced ZnO nanorods that had a more oxygen vacancy than those grown from seed layer untreated with plasma. Since the oxygen vacancies on ZnO nanorods serve as strong binding sites for absorption of various organic and inorganic molecules. Consequently, a nano-patterning of the crystalline ZnO nanorods grown from the seed layer treated with plasma may give the versatile applications for the electronics devices

    WNT signalling in prostate cancer

    Get PDF
    Genome sequencing and gene expression analyses of prostate tumours have highlighted the potential importance of genetic and epigenetic changes observed in WNT signalling pathway components in prostate tumours-particularly in the development of castration-resistant prostate cancer. WNT signalling is also important in the prostate tumour microenvironment, in which WNT proteins secreted by the tumour stroma promote resistance to therapy, and in prostate cancer stem or progenitor cells, in which WNT-β-catenin signals promote self-renewal or expansion. Preclinical studies have demonstrated the potential of inhibitors that target WNT receptor complexes at the cell membrane or that block the interaction of β-catenin with lymphoid enhancer-binding factor 1 and the androgen receptor, in preventing prostate cancer progression. Some WNT signalling inhibitors are in phase I trials, but they have yet to be tested in patients with prostate cancer

    First Report from the Asian Rotavirus Surveillance Network

    Get PDF
    Rotavirus remains the most common cause of severe, dehydrating diarrhea among children worldwide. Several rotavirus vaccines are under development. Decisions about new vaccine introduction will require reliable data on disease impact. The Asian Rotavirus Surveillance Network, begun in 2000 to facilitate collection of these data, is a regional collaboration of 36 hospitals in nine countries or areas that conduct surveillance for rotavirus hospitalizations using a uniform World Health Organization protocol. We summarize the Network's organization and experience from August 2001 through July 2002. During this period, 45% of acute diarrheal hospitalizations among children 0–5 years were attributable to rotavirus, higher than previous estimates. Rotavirus was detected in all sites year-round. This network is a novel, regional approach to surveillance for vaccine-preventable diseases. Such a network should provide increased visibility and advocacy, enable more efficient data collection, facilitate training, and serve as the paradigm for rotavirus surveillance activities in other regions

    The cardiomyocyte disrupts pyrimidine biosynthesis in non-myocytes to regulate heart repair

    Get PDF
    Various populations of cells are recruited to the heart after cardiac injury, but little is known about whether cardiomyocytes directly regulate heart repair. Using a murine model of ischemic cardiac injury, we demonstrate that cardiomyocytes play a pivotal role in heart repair by regulating nucleotide metabolism and fates of nonmyocytes. Cardiac injury induced the expression of the ectonucleotidase ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), which hydrolyzes extracellular ATP to form AMP. In response to AMP, cardiomyocytes released adenine and specific ribonucleosides that disrupted pyrimidine biosynthesis at the orotidine monophosphate (OMP) synthesis step and induced genotoxic stress and p53-mediated cell death of cycling nonmyocytes. As nonmyocytes are critical for heart repair, we showed that rescue of pyrimidine biosynthesis by administration of uridine or by genetic targeting of the ENPP1/AMP pathway enhanced repair after cardiac injury. We identified ENPP1 inhibitors using small molecule screening and showed that systemic administration of an ENPP1 inhibitor after heart injury rescued pyrimidine biosynthesis in nonmyocyte cells and augmented cardiac repair and postinfarct heart function. These observations demonstrate that the cardiac muscle cell regulates pyrimidine metabolism in nonmuscle cells by releasing adenine and specific nucleosides after heart injury and provide insight into how intercellular regulation of pyrimidine biosynthesis can be targeted and monitored for augmenting tissue repair

    Image-guided intensity modulated radiotherapy with helical tomotherapy for postoperative treatment of high-risk oral cavity cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this study was to assess the treatment results and toxicity profiles of helical tomotherapy (HT) for postoperative high-risk oral cavity cancer.</p> <p>Methods</p> <p>From December 6, 2006 through October 9, 2009, 19 postoperative high-risk oral cavity cancer patients were enrolled. All of the patients received HT with (84%) or without (16%) chemotherapy.</p> <p>Results</p> <p>The median follow-up time was 17 months. The 2-year overall survival, disease-free survival, locoregional control, and distant metastasis-free rates were 94%, 84%, 92%, and 94%, respectively. The package of overall treatment time > 13 wk, the interval between surgery and radiation ≤ 6 wk, and the overall treatment time of radiation ≤ 7 wk was 21%, 84%, and 79%, respectively. The percentage of grade 3 mucositis, dermatitis, and leucopenia was 42%, 5% and 5%, respectively.</p> <p>Conclusions</p> <p>HT achieved encouraging clinical outcomes for postoperative high-risk oral cavity cancer patients with high compliance. A long-term follow-up study is needed to confirm these preliminary findings.</p
    corecore