36 research outputs found

    Estuarine clay mineral distribution:Modern analogue for ancient sandstone reservoir quality prediction

    Get PDF
    The spatial distribution of clay minerals in sandstones, which may both enhance or degrade reservoir quality, is poorly understood. To address this, clay mineral distribution patterns and host‐sediment properties (grain size, sorting, clay fraction abundance and bioturbation intensity) have, for the first time, been determined and mapped at an unprecedentedly high‐resolution in a modern estuarine setting (Ravenglass Estuary, UK). Results show that the estuary sediment is dominated by illite with subordinate chlorite and kaolinite, although the rivers supply sediment with less illite and significantly more chlorite than found in the estuary. Fluvial‐supplied sediment has been locally diluted by sediment derived from glaciogenic drift deposits on the margins of the estuary. Detailed clay mineral maps and statistical analyses reveal that the estuary has a heterogeneous distribution of illite, chlorite and kaolinite. Chlorite is relatively most abundant on the northern foreshore and backshore and is concentrated in coarse‐grained inner estuary dunes and tidal bars. Illite is relatively most abundant (as well as most crystalline and most Fe–Mg‐rich) in fine‐grained inner estuary and central basin mud and mixed flats. Kaolinite has the highest abundance in fluvial sediment and is relatively homogenous in tidally‐influenced environments. Clay mineral distribution patterns in the Ravenglass Estuary have been strongly influenced by sediment supply (residence time) and subsequently modified by hydrodynamic processes. There is no relationship between macro‐faunal bioturbation intensity and the abundance of chlorite, illite or kaolinite. Based on this modern‐analogue study, outer estuarine sediments are likely to be heavily quartz cemented in deeply‐buried (burial temperatures exceeding 80 to 100°C) sandstone reservoirs due to a paucity of clay grade material (<0·5%) to form complete grain coats. In contrast, chlorite‐enriched tidal bars and dunes in the inner estuary, with their well‐developed detrital clay coats, are likely to have quartz cement inhibiting authigenic clay coats in deeply‐buried sandstones

    THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914

    Get PDF
    A transient gravitational-wave signal, GW150914, was identi fi ed in the twin Advanced LIGO detectors on 2015 September 2015 at 09:50:45 UTC. To asse ss the implications of this discovery, the detectors remained in operation with unchanged con fi gurations over a period of 39 days around the time of t he signal. At the detection statistic threshold corresponding to that observed for GW150914, our search of the 16 days of simultaneous two-detector observational data is estimated to have a false-alarm rate ( FAR ) of < ́ -- 4.9 10 yr 61 , yielding a p -value for GW150914 of < ́ - 210 7 . Parameter estimation follo w-up on this trigger identi fi es its source as a binary black hole ( BBH ) merger with component masses ( )( ) = - + - + mm M ,36,29 12 4 5 4 4 at redshift = - + z 0.09 0.04 0.03 ( median and 90% credible range ) . Here, we report on the constraints these observations place on the rate of BBH coalescences. Considering only GW150914, assuming that all BBHs in the universe have the same masses and spins as this event, imposing a search FAR threshold of 1 per 100 years, and assuming that the BBH merger rate is constant in the comoving frame, we infer a 90% credible range of merger rates between – -- 2 53 Gpc yr 31 ( comoving frame ) . Incorporating all search triggers that pass a much lower threshold while accounting for the uncerta inty in the astrophysical origin of each trigger, we estimate a higher rate, ranging from – -- 13 600 Gpc yr 31 depending on assumptions about the BBH mass distribution. All together, our various rate estimat es fall in the conservative range – -- 2 600 Gpc yr 31

    Morphological study of the testes of the dove Columba livia (Gmelin) (Columbidae, Columbiformes)

    No full text
    Known as "domestic dove", the Columba livia (Gmelin, 1789) is a columbidae species widely distributed in Brazil, whose reproductive biology has been studied by many researchers. The testes of 12 Columba livia males were collected and prepared for histologic examination under an optical microscope, the results of which were analysed and photographed. The tunica albuginea that covers the testes consists of a thick, not very cellular layer of dense connective tissue. Groups of interstitial cells with typical morphological appearance and surrounded by loose, well vascularized connective tissue are observable within the organ, between the seminiferous tubules. The seminiferous tubules are thick, intensely wound and, when seen in cross section, show Sertoli cells and spermatogenic lineage cells in different stages of development. These include spermatogonia (type A, clear; type A, dark; and type B), spermatocytes I and II, spermatids, and a large number of spermatozoons. Similarities are found between the histological findings described and those reported for the testes of Columbina talpacoti (Temminck, 1811)
    corecore