118 research outputs found

    Shear localization and size-dependent strength of YCd6 quasicrystal approximant at the micrometer length scale

    Get PDF
    Mechanical properties of materials are strongly dependent of their atomic arrangement as well as the sample dimension, particularly at the micrometer length scale. In this study, we investigated the small-scale mechanical properties of single-crystalline YCd6, which is a rational approximant of the icosahedral Y-Cd quasicrystal. In situ microcompression tests revealed that shear localization always occurs on {101} planes, but the shear direction is not constrained to any particular crystallographic directions. Furthermore, the yield strengths show the size dependence with a power law exponent of 0.4. Shear localization on {101} planes and size-dependent yield strength are explained in terms of a large interplanar spacing between {101} planes and the energetics of shear localization process, respectively. The mechanical behavior of the icosahedral Y-Cd quasicrystal is also compared to understand the influence of translational symmetry on the shear localization process in both YCd6 and Y-Cd quasicrystal micropillars. The results of this study will provide an important insight in a fundamental understanding of shear localization process in novel complex intermetallic compounds

    Experimental Study of the Injection System for CO2 Geologic Storage Demonstration

    Get PDF
    AbstractThe worldwide issue of greenhouse gas reduction has recently drawn great attention to carbon capture and storage (CCS). Almost CCS studies have been focused in the capture technology of carbon dioxide and the geological investigation for underground storage. The study of mechanical injection system for carbon dioxide has not implemented nearly. We are intended to develop a ground system for underground injection of carbon dioxide. In this study, we made lab-scale underground injection system and implemented injection simulation test experimentally. The 10,000 ton/year pilot plant for geological storage of carbon dioxide will be designed on the base of these test results. Major components of the lab-scale underground injection system include a pressure pump and an in-line heater to bring liquid carbon dioxide into its supercritical state. Test results assure that this system readily achieves the designed injection pressure and temperature, showing satisfactory control performance

    Development and Characterization of High-Quality HfO<sub>2</sub>/InGaAs MOS Interface

    Get PDF
    The scope of this chapter is to introduce a highly efficient HfO2 atomic layer deposition (ALD) process with superior interface defect characteristics that can be applied on high-mobility III-V substrates. For a long time, the major academic research of III-V metal-oxide-semiconductor (MOS) studies was mainly oriented on searching for the suitable high-k dielectric, and among the reported high-k/III-V MOS studies, Al2O3 and AlN have demonstrated the most promising results. However, usually, the dielectrics with higher dielectric constant suffered from more defective interface quality including the HfO2, which should be overcome to meet the intensive operation voltage scaling requirements. In order to protect the interface of the HfO2/III-V MOS, the exposed III-V surface has to be carefully treated before, while, and after the whole high-k deposition process. For this purpose, the effect of isopropyl alcohol precursor and in situ cyclic nitrogen plasma treatment on the HfO2 ALD process at III-V substrates was thoroughly investigated. Remarkable interface state density levels with strong inversion behavior were achieved, which have not been observed at the previous HfO2/InGaAs studies. Also, detailed analysis of the interface characteristics was investigated to broaden the understanding of the improvement phenomenon

    Variability of daily maximum wind speed across China, 1975–2016: an examination of likely causes

    Get PDF
    Assessing change in daily maximum wind speed and its likely causes is crucial for many applications such as wind power generation and wind disaster risk governance. Multidecadal variability of observed near-surface daily maximum wind speed (DMWS) from 778 stations over China is analyzed for 1975–2016. A robust homogenization protocol using the R package Climatol was applied to the DMWS observations. The homogenized dataset displayed a significant (p 0.10); that is, DMWS declined during the cold semester (October–March) and increased during the warm semester (April–September). Correlation analysis of the Arctic Oscillation, the Southern Oscillation, and the west Pacific modes exhibited significant correlation with DMWS variability, unveiling their complementarity in modulating DMWS. Further, we explored potential physical processes relating to the atmospheric circulation changes and their impacts on DMWS and found that 1) overall weakened horizontal airflow [large-scale mean horizontal pressure gradient (from −0.24 to +0.02 hPa decade−1) and geostrophic wind speed (from −0.6 to +0.6 m s−1 decade−1)], 2) widely decreased atmospheric vertical momentum transport [atmospheric stratification thermal instability (from −3 to +1.5 decade−1) and vertical wind shear (from −0.4 to +0.2 m s−1 decade−1)], and 3) decreased extratropical cyclones frequency (from −0.3 to 0 month decade−1) are likely causes of DMWS change.This study was supported by the National Natural Science Foundation of China (Grant 41621061), the National Key Research and Development Program–Global Change and Mitigation Project (Grant 2016YFA0602404), funding from STINT (CH2015-6226), and the European Union’s Horizon 2020 research and innovation program under the Marie SkƂodowska-Curie grant agreement 703733 (STILLING project). This work has been also supported by the VR project (2017-03780) funded by the Swedish Research Council and Ramon y Cajal fellowship (RYC-2017-22830) and Grant RTI2018-095749-A-I00 (MCIU/AEI/FEDER, UE)

    Outcomes of Endoscopic Tympanoplasty for Large Perforations: A Multicenter Retrospective Study in South Korea

    Get PDF
    Objectives. Endoscopic tympanoplasty (ET) provides minimally invasive transcanal access to the middle ear and improves middle ear visibility for the treatment of tympanic membrane (TM) perforations. However, the literature on surgical outcomes for large TM perforations is lacking and limited to small series. This study aimed to evaluate the clinical benefits of ET for large TM perforations. Methods. This retrospective cohort study was conducted at nine tertiary referral hospitals in South Korea, where 252 patients who underwent ET as primary surgery from September 2019 to August 2021 were included. The outcome measures included the graft success rate and pre- and postoperative audiometric data. Results. In 239 patients, the graft success rate of ET for large or subtotal perforations was 86.2% (206 patients), while the graft failure rate was 13.8% (33 patients). The graft failure rate was directly correlated with surgical techniques, including overlay and medial or lateral underlay tympanoplasty (P=0.027). Lateral underlay tympanoplasty showed the most favorable results. Sex, laterality, etiology, site and size of perforation, operation time, and graft materials did not vary significantly between the graft success and failure groups (P>0.05). The mean air-bone gap (ABG) improved significantly in both groups (graft success group: 10.0±0.6 dB and graft failure group: 7.7±0.3 dB; P<0.001). However, the ABG improvement did not significantly differ between the groups. Analysis of covariance revealed that the postoperative 500-Hz bone conduction threshold improved after successful ET (adjusted coefficient, –11.351; 95% confidence interval, –21.491 to –1.212; P=0.028). Conclusion. This study involved the largest population to date of large TM perforations treated by ET. The study findings suggest that ET is feasible and effective in treating large TM perforations

    Molecular basis for SMC rod formation and its dissolution upon DNA binding.

    Get PDF
    SMC condensin complexes are central modulators of chromosome superstructure in all branches of life. Their SMC subunits form a long intramolecular coiled coil, which connects a constitutive "hinge" dimerization domain with an ATP-regulated "head" dimerization module. Here, we address the structural arrangement of the long coiled coils in SMC complexes. We unequivocally show that prokaryotic Smc-ScpAB, eukaryotic condensin, and possibly also cohesin form rod-like structures, with their coiled coils being closely juxtaposed and accurately anchored to the hinge. Upon ATP-induced binding of DNA to the hinge, however, Smc switches to a more open configuration. Our data suggest that a long-distance structural transition is transmitted from the Smc head domains to regulate Smc-ScpAB's association with DNA. These findings uncover a conserved architectural theme in SMC complexes, provide a mechanistic basis for Smc's dynamic engagement with chromosomes, and offer a molecular explanation for defects in Cornelia de Lange syndrome

    Transcriptional regulatory networks of tumor-associated macrophages that drive malignancy in mesenchymal glioblastoma.

    Get PDF
    BACKGROUND: Glioblastoma (GBM) is a complex disease with extensive molecular and transcriptional heterogeneity. GBM can be subcategorized into four distinct subtypes; tumors that shift towards the mesenchymal phenotype upon recurrence are generally associated with treatment resistance, unfavorable prognosis, and the infiltration of pro-tumorigenic macrophages. RESULTS: We explore the transcriptional regulatory networks of mesenchymal-associated tumor-associated macrophages (MA-TAMs), which drive the malignant phenotypic state of GBM, and identify macrophage receptor with collagenous structure (MARCO) as the most highly differentially expressed gene. MARCO CONCLUSIONS: Collectively, our study characterizes the global transcriptional profile of TAMs driving mesenchymal GBM pathogenesis, providing potential therapeutic targets for improving the effectiveness of GBM immunotherapy

    Sex-related impact on clinical outcomes of patients treated with drug-eluting stents according to clinical presentation: Patient-level pooled analysis from the GRAND-DES registry

    Get PDF
    Background: The contribution of sex and initial clinical presentation to the long-term outcomes in patients undergoing percutaneous coronary intervention (PCI) is still debated. Methods: Individual patient data from 5 Korean-multicenter drug-eluting stent (DES) registries (The GRAND-DES) were pooled. A total of 17,286 patients completed 3-year follow-up (5216 women and 12,070 men). The median follow-up duration was 1125 days (interquartile range 1097–1140 days), and the primary endpoint was cardiac death at 3 years. Results: The clinical indication for PCI was stable angina pectoris (SAP) in 36.8%, unstable angina pectoris (UAP) or non-ST-segment elevation myocardial infarction (NSTEMI) in 47.4%, and STEMI in 15.8%. In all groups, women were older and had a higher proportion of hypertension and diabetes mellitus compared with men. Women presenting with STEMI were older than women with SAP, with the opposite seen in men. There was no sex difference in cardiac death for SAP or UAP/NSTEMI. In STEMI patients, the incidence of cardiac death (7.9% vs. 4.4%, p = 0.001), all-cause mortality (11.1% vs. 6.9%, p = 0.001), and minor bleeding (2.2% vs. 1.2%, p = 0.043) was significantly higher in women. After multivariable adjustment, cardiac death was lower in women for UAP/NSTEMI (HR 0.69, 95% CI 0.53–0.89, p = 0.005), while it was similar for STEMI (HR 0.97, 95% CI 0.65–1.44, p = 0.884). Conclusions: There was no sex difference in cardiac death after PCI with DES for SAP and UAP/NSTEMI patients. In STEMI patients, women had worse outcomes compared with men; however, after the adjustment of confounders, female sex was not an independent predictor of mortality
    • 

    corecore