150 research outputs found
Austenite in Transformation-Induced Plasticity Steel Subjected to Multiple Isothermal Heat Treatments
The thermodynamic limit to the progress of the bainite reaction in steels containing a cementite inhibitor often leaves large quantities of thermally or mechanically unstable austenite. Such austenite is not effective in delaying the onset of plastic instabilities during the course of deformation. In such circumstances, it is useful to conduct isothermal transformation at a high temperature where the rate of reaction is relatively rapid, followed by a lower temperature step that permits more bainite to be generated. This in turn increases the stability of the refined austenite, which then transforms gently over a large range of strain during a tensile test. A significant corollary is that the two-step heat treatments are unnecessary in low-carbon steels, where the bainite reaction is able to proceed to a greater extent before reaching the thermodynamic limit. Furthermore, the two-step process can be counterproductive in low carbon steel, because the austenite content is reduced to a level below which it does not enhance the mechanical properties. Other circumstances in which multiple heat treatments are necessary are also discussed.The authors are grateful to POSCO for support through Steel
Innovation Programme, and to the World Class University Programme of the National
Research Foundation of Korea, Ministry of Education, Science and Technology, project
number R32-2008-000-10147.This is the accepted manuscript version. The final published version is available from Springer at http://link.springer.com/article/10.1007%2Fs11661-014-2405-z
Different expressions of trypsin and chymotrypsin in relation to growth in Atlantic salmon (Salmo salar L.)
The expressions of trypsin and chymotrypsin in the pyloric caeca of Atlantic salmon (Salmo salar L.) were studied in three experiments. Two internal (trypsin phenotypes, life stages) and three common external factors (starvation, feeding, temperatures) influencing growth rates were varied. Growth was stimulated by increased temperature and higher feeding rate, and it was depressed during starvation. The interaction between trypsin phenotype and start-feeding temperature affected specific activity of trypsin, but not of chymotrypsin. Trypsin specific activity and the activity ratio of trypsin to chymotrypsin (T/C ratio) increased when growth was promoted. Chymotrypsin specific activity, on the other hand, increased when there was a reduction in growth rate whereas fish with higher growth had higher chymotrypsin specific activity resulting in lower T/C ratio value. During a rapid growth phase, trypsin specific activity did not correlate with chymotrypsin specific activity. On the other hand, a relationship between specific activities of trypsin and chymotrypsin could be observed when growth declined, such as during food deprivation. Trypsin is the sensitive key protease under conditions favouring growth and genetically and environmentally affected, while chymotrypsin plays a major role when growth is limited or depressed. Trypsin specific activity and the T/C ratio value are shown to be important factors in the digestion process affecting growth rate, and could be applicable as indicators for growth studies of fish in captive cultures and in the wild, especially when food consumption rate cannot be measured
COL4A2 is associated with lacunar ischemic stroke and deep ICH: Meta-analyses among 21,500 cases and 40,600 controls
Objective: To determine whether common variants in familial cerebral small vessel disease (SVD) genes confer risk of sporadic cerebral SVD. Methods: We meta-analyzed genotype data from individuals of European ancestry to determine associations of common single nucleotide polymorphisms (SNPs) in 6 familial cerebral SVD genes (COL4A1, COL4A2, NOTCH3, HTRA1, TREX1, and CECR1) with intracerebral hemorrhage (ICH) (deep, lobar, all; 1,878 cases, 2,830 controls) and ischemic stroke (IS) (lacunar, cardioembolic, large vessel disease, all; 19,569 cases, 37,853 controls). We applied data quality filters and set statistical significance thresholds accounting for linkage disequilibrium and multiple testing. Results: A locus in COL4A2 was associated (significance threshold p , 3.5 3 1024) with both lacunar IS (lead SNP rs9515201: odds ratio [OR] 1.17, 95%confidence interval [CI] 1.11-1.24, p 56.62 31028) and deep ICH (lead SNP rs4771674: OR 1.28, 95%CI 1.13-1.44, p 55.76 3 1025). A SNP in HTRA1 was associated (significance threshold p , 5.5 3 1024) with lacunar IS (rs79043147: OR 1.23, 95%CI 1.10-1.37, p 5 1.90 3 1024) and less robustly with deep ICH. There was no clear evidence for association of common variants in either COL4A2 or HTRA1 with non-SVD strokes or in any of the other genes with any stroke phenotype
Space Telescope and Optical Reverberation Mapping Project. VII. Understanding the Ultraviolet Anomaly in NGC 5548 with X-Ray Spectroscopy
During the Space Telescope and Optical Reverberation Mapping Project observations of NGC 5548, the continuum and emission-line variability became decorrelated during the second half of the six-month-long observing campaign. Here we present Swift and Chandra X-ray spectra of NGC 5548 obtained as part of the campaign. The Swift spectra show that excess flux (relative to a power-law continuum) in the soft X-ray band appears before the start of the anomalous emission-line behavior, peaks during the period of the anomaly, and then declines. This is a model-independent result suggesting that the soft excess is related to the anomaly. We divide the Swift data into on- and off-anomaly spectra to characterize the soft excess via spectral fitting. The cause of the spectral differences is likely due to a change in the intrinsic spectrum rather than to variable obscuration or partial covering. The Chandra spectra have lower signal-to-noise ratios, but are consistent with the Swift data. Our preferred model of the soft excess is emission from an optically thick, warm Comptonizing corona, the effective optical depth of which increases during the anomaly. This model simultaneously explains all three observations: the UV emission-line flux decrease, the soft-excess increase, and the emission-line anomaly
Serum magnesium and calcium levels in relation to ischemic stroke : Mendelian randomization study
ObjectiveTo determine whether serum magnesium and calcium concentrations are causally associated with ischemic stroke or any of its subtypes using the mendelian randomization approach.MethodsAnalyses were conducted using summary statistics data for 13 single-nucleotide polymorphisms robustly associated with serum magnesium (n = 6) or serum calcium (n = 7) concentrations. The corresponding data for ischemic stroke were obtained from the MEGASTROKE consortium (34,217 cases and 404,630 noncases).ResultsIn standard mendelian randomization analysis, the odds ratios for each 0.1 mmol/L (about 1 SD) increase in genetically predicted serum magnesium concentrations were 0.78 (95% confidence interval [CI] 0.69-0.89; p = 1.3
7 10-4) for all ischemic stroke, 0.63 (95% CI 0.50-0.80; p = 1.6
7 10-4) for cardioembolic stroke, and 0.60 (95% CI 0.44-0.82; p = 0.001) for large artery stroke; there was no association with small vessel stroke (odds ratio 0.90, 95% CI 0.67-1.20; p = 0.46). Only the association with cardioembolic stroke was robust in sensitivity analyses. There was no association of genetically predicted serum calcium concentrations with all ischemic stroke (per 0.5 mg/dL [about 1 SD] increase in serum calcium: odds ratio 1.03, 95% CI 0.88-1.21) or with any subtype.ConclusionsThis study found that genetically higher serum magnesium concentrations are associated with a reduced risk of cardioembolic stroke but found no significant association of genetically higher serum calcium concentrations with any ischemic stroke subtype
Genetic Sharing with Cardiovascular Disease Risk Factors and Diabetes Reveals Novel Bone Mineral Density Loci.
Bone Mineral Density (BMD) is a highly heritable trait, but genome-wide association studies have identified few genetic risk factors. Epidemiological studies suggest associations between BMD and several traits and diseases, but the nature of the suggestive comorbidity is still unknown. We used a novel genetic pleiotropy-informed conditional False Discovery Rate (FDR) method to identify single nucleotide polymorphisms (SNPs) associated with BMD by leveraging cardiovascular disease (CVD) associated disorders and metabolic traits. By conditioning on SNPs associated with the CVD-related phenotypes, type 1 diabetes, type 2 diabetes, systolic blood pressure, diastolic blood pressure, high density lipoprotein, low density lipoprotein, triglycerides and waist hip ratio, we identified 65 novel independent BMD loci (26 with femoral neck BMD and 47 with lumbar spine BMD) at conditional FDR < 0.01. Many of the loci were confirmed in genetic expression studies. Genes validated at the mRNA levels were characteristic for the osteoblast/osteocyte lineage, Wnt signaling pathway and bone metabolism. The results provide new insight into genetic mechanisms of variability in BMD, and a better understanding of the genetic underpinnings of clinical comorbidity
Comprehensive analysis of epigenetic clocks reveals associations between disproportionate biological ageing and hippocampal volume
The concept of age acceleration, the difference between biological age and chronological age, is of growing interest, particularly with respect to age-related disorders, such as Alzheimer’s Disease (AD). Whilst studies have reported associations with AD risk and related phenotypes, there remains a lack of consensus on these associations. Here we aimed to comprehensively investigate the relationship between five recognised measures of age acceleration, based on DNA methylation patterns (DNAm age), and cross-sectional and longitudinal cognition and AD-related neuroimaging phenotypes (volumetric MRI and Amyloid-β PET) in the Australian Imaging, Biomarkers and Lifestyle (AIBL) and the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Significant associations were observed between age acceleration using the Hannum epigenetic clock and cross-sectional hippocampal volume in AIBL and replicated in ADNI. In AIBL, several other findings were observed cross-sectionally, including a significant association between hippocampal volume and the Hannum and Phenoage epigenetic clocks. Further, significant associations were also observed between hippocampal volume and the Zhang and Phenoage epigenetic clocks within Amyloid-β positive individuals. However, these were not validated within the ADNI cohort. No associations between age acceleration and other Alzheimer’s disease-related phenotypes, including measures of cognition or brain Amyloid-β burden, were observed, and there was no association with longitudinal change in any phenotype. This study presents a link between age acceleration, as determined using DNA methylation, and hippocampal volume that was statistically significant across two highly characterised cohorts. The results presented in this study contribute to a growing literature that supports the role of epigenetic modifications in ageing and AD-related phenotypes
- …