1,610 research outputs found

    Chromium(VI) and Oxyanion Remediation Of Vadose Zone Soils With Zero Valent Iron (ZVI) and Biological Reduction

    Full text link
    In areas with high industrial development, soil and groundwater are often heavily contaminated with hexavalent chromium [ Cr(VI) ], which commonly occurs as the oxyanions chromate ( CrO42- ) and dichromate ( Cr2O72- ). By itself, Cr(VI) is a common contaminant in various industrial wastes, but other oxyanions such as nitrate [ NO3- ], chlorate [ ClO3- ], and perchlorate [ ClO4- ] can appear with Cr(VI) as co-contaminants based on the type of industrial waste. Cr(VI) and ClO3- occur as co-contaminants in areas where sodium chlorate is manufactured as a bleaching agent for the pulp and paper industry (ERCO Worldwide, 2012). ClO4- and Cr(VI) are common co-contaminants due to their shared applications in electroplating and leather tanning (Sorensen et al., 2006). ClO4-, NO3- and Cr(VI) can occur simultaneously in areas associated with the manufacture, use and disposal of rocket fuel (Rong, 2018). ClO4- and NO3- are also noted to be common co-contaminants in soil and groundwater. (Logan and Lapoint, 2002; Ziv-El and Rittman, 2009; Rong, 2018) Prior to the implementation of RCRA regulations in 1986, wastes containing these contaminants were simply disposed of into the ground, resulting in the contamination of both vadose zone soils and groundwater. Technological options for remediation of vadose zone soils are limited in comparison to groundwater remediation due to lack of development and field testing, with very few options having been successfully implemented in vadose zone treatment (Dresel et al., 2011). This thesis focuses on bioremediation options for vadose zone soils, specifically on the remediation of Cr(VI), NO3-, and ClO3- using biological reduction. The research objective of this study was to assess the viability of bioremediation as an alternative for the removal of Cr(VI) from vadose zone soils using bioremediation methods. Specifically, autotrophic removal through biotic contaminant removal under maintained anaerobic conditions and bio-augmented remediation using zero-valent iron [ ZVI ] were compared to determine which method of treatment was more effective at reducing Cr(VI) and its co-contaminants from vadose zone soils. Microcosm experiments were performed using contaminated fine-grained soils taken from a site in the southwestern United States with high levels of Cr(VI), NO3-, and ClO3-. Biotic reduction tests comparing EOS-Pro and molasses as carbon sources were performed, where soil was divided, mixed with different carbon source and nutrients, prepared and placed in an anaerobic chamber to incubate. A second microcosm test was performed where contaminated soils were mixed with varying amounts of carbon source, nutrients, bacteria and stoichiometric ratios of ZVI to determine which combination of biological reduction and ZVI reduced the most contaminant in the least amount of time. Sample blanks were formed for both experiments to determine which soil amendment enhanced contaminant reduction, if any, and by how much. During the biotic reduction experiments, it was determined that while molasses was more effective in stimulating Cr(VI) removal, neither carbon source had any significant effect on NO3- or ClO3- removal due to incomplete Cr(VI) reduction. Low soil moisture in the samples also inhibited Cr(VI) reduction, which in turn also inhibited soil denitrification and ClO3- reduction. In comparison, the ZVI remediation experiments showed that significant reduction of all three contaminants took place within 50 days of regular treatment of the vadose zone soils, with Cr(VI) and ClO3- being almost completely removed from the soil. As the ZVI experiments involved regular soil wetting to prevent desiccation, it raises the implication that a combination of soil flushing techniques with biological reduction using ZVI could be employed to treat highly contaminated vadose zone soils. Considerations for the use of either ZVI or biological reduction techniques in vadose zone treatment include the costs of using high stoichiometric ratios of ZVI to contaminant, the removal of potential byproducts like iron [ Fe ] and ammonia [ NH3 ], and the ambient soil conditions at the time of treatment

    An oligofluorene truxene based distributed feedback laser for biosensing applications

    Get PDF
    The first example of an all-organic oligofluorene truxene based distributed feedback laser for the detection of a specific protein–small molecule interaction is reported. The protein avidin was detected down to View the MathML source1μgmL−1 using our biotin-labelled biosensor platform. This interaction was both selective and reversible when biotin was replaced with desthiobiotin. Avidin detection was not perturbed by Bovine Serum Albumin up to View the MathML source50,000μgmL−1. Our biosensor offers a new detection platform that is both highly sensitive, modular and potentially re-usable

    The ENIGMA Stroke Recovery Working Group: Big data neuroimaging to study brain–behavior relationships after stroke

    Get PDF
    The goal of the Enhancing Neuroimaging Genetics through Meta‐Analysis (ENIGMA) Stroke Recovery working group is to understand brain and behavior relationships using well‐powered meta‐ and mega‐analytic approaches. ENIGMA Stroke Recovery has data from over 2,100 stroke patients collected across 39 research studies and 10 countries around the world, comprising the largest multisite retrospective stroke data collaboration to date. This article outlines the efforts taken by the ENIGMA Stroke Recovery working group to develop neuroinformatics protocols and methods to manage multisite stroke brain magnetic resonance imaging, behavioral and demographics data. Specifically, the processes for scalable data intake and preprocessing, multisite data harmonization, and large‐scale stroke lesion analysis are described, and challenges unique to this type of big data collaboration in stroke research are discussed. Finally, future directions and limitations, as well as recommendations for improved data harmonization through prospective data collection and data management, are provided

    DeepSearch: A Simple and Effective Blackbox Attack for Deep Neural Networks

    Full text link
    Although deep neural networks have been very successful in image-classification tasks, they are prone to adversarial attacks. To generate adversarial inputs, there has emerged a wide variety of techniques, such as black- and whitebox attacks for neural networks. In this paper, we present DeepSearch, a novel fuzzing-based, query-efficient, blackbox attack for image classifiers. Despite its simplicity, DeepSearch is shown to be more effective in finding adversarial inputs than state-of-the-art blackbox approaches. DeepSearch is additionally able to generate the most subtle adversarial inputs in comparison to these approaches

    Asymmetric Strand Segregation: Epigenetic Costs of Genetic Fidelity?

    Get PDF
    Asymmetric strand segregation has been proposed as a mechanism to minimize effective mutation rates in epithelial tissues. Under asymmetric strand segregation, the double-stranded molecule that contains the oldest DNA strand is preferentially targeted to the somatic stem cell after each round of DNA replication. This oldest DNA strand is expected to have fewer errors than younger strands because some of the errors that arise on daughter strands during their synthesis fail to be repaired. Empirical findings suggest the possibility of asymmetric strand segregation in a subset of mammalian cell lineages, indicating that it may indeed function to increase genetic fidelity. However, the implications of asymmetric strand segregation for the fidelity of epigenetic information remain unexplored. Here, I explore the impact of strand-segregation dynamics on epigenetic fidelity using a mathematical-modelling approach that draws on the known molecular mechanisms of DNA methylation and existing rate estimates from empirical methylation data. I find that, for a wide range of starting methylation densities, asymmetric—but not symmetric—strand segregation leads to systematic increases in methylation levels if parent strands are subject to de novo methylation events. I found that epigenetic fidelity can be compromised when enhanced genetic fidelity is achieved through asymmetric strand segregation. Strand segregation dynamics could thus explain the increased DNA methylation densities that are observed in structured cellular populations during aging and in disease

    Theoretical Studies of Spectroscopy and Dynamics of Hydrated Electrons.

    Get PDF

    COSMIC (Cohort Studies of Memory in an International Consortium): An international consortium to identify risk and protective factors and biomarkers of cognitive ageing and dementia in diverse ethnic and sociocultural groups

    No full text
    BACKGROUND: A large number of longitudinal studies of population-based ageing cohorts are in progress internationally, but the insights from these studies into the risk and protective factors for cognitive ageing and conditions like mild cognitive impairment and dementia have been inconsistent. Some of the problems confounding this research can be reduced by harmonising and pooling data across studies. COSMIC (Cohort Studies of Memory in an International Consortium) aims to harmonise data from international cohort studies of cognitive ageing, in order to better understand the determinants of cognitive ageing and neurocognitive disorders. METHODS/DESIGN: Longitudinal studies of cognitive ageing and dementia with at least 500 individuals aged 60 years or over are eligible and invited to be members of COSMIC. There are currently 17 member studies, from regions that include Asia, Australia, Europe, and North America. A Research Steering Committee has been established, two meetings of study leaders held, and a website developed. The initial attempts at harmonising key variables like neuropsychological test scores are in progress. DISCUSSION: The challenges of international consortia like COSMIC include efficient communication among members, extended use of resources, and data harmonisation. Successful harmonisation will facilitate projects investigating rates of cognitive decline, risk and protective factors for mild cognitive impairment, and biomarkers of mild cognitive impairment and dementia. Extended implications of COSMIC could include standardised ways of collecting and reporting data, and a rich cognitive ageing database being made available to other researchers. COSMIC could potentially transform our understanding of the epidemiology of cognitive ageing, and have a world-wide impact on promoting successful ageing

    Report Card grades on the physical activity of children and youth comparing 30 very high Human Development Index countries

    Get PDF
    Background: To better understand the childhood physical inactivity crisis, Report Cards on physical activity of children and youth were prepared concurrently in 30 very high Human Development Index countries. The aim of this article was to present, describe, and compare the findings from these Report Cards. Methods: The Report Cards were developed using a harmonized process for data gathering, assessing, and assigning grades to 10 common physical activity indicators. Descriptive statistics were calculated after converting letter grades to interval variables, and correlational analyses between the 10 common indicators were performed using Spearman's rank correlation coefficients. Results: A matrix of 300 grades was obtained with substantial variations within and between countries. Low grades were observed for behavioral indicators, and higher grades were observed for sources of influence indicators, indicating a disconnect between supports and desired behaviors. Conclusion: This analysis summarizes the level and context of the physical activity of children and youth among very high Human Development Index countries, and provides additional evidence that the situation regarding physical activity in children and youth is very concerning. Unless a major shift to a more active lifestyle happens soon, a high rate of noncommunicable diseases can be anticipated when this generation of children reaches adulthood.</p

    Age-related cognitive decline and associations with sex, education and apolipoprotein E genotype across ethnocultural groups and geographic regions: a collaborative cohort study

    Get PDF
    Background The prevalence of dementia varies around the world, potentially contributed to by international differences in rates of age-related cognitive decline. Our primary goal was to investigate how rates of age-related decline in cognitive test performance varied among international cohort studies of cognitive aging. We also determined the extent to which sex, educational attainment, and apolipoprotein E ε4 allele (APOE*4) carrier status were associated with decline. Methods and findings We harmonized longitudinal data for 14 cohorts from 12 countries (Australia, Brazil, France, Greece, Hong Kong, Italy, Japan, Singapore, Spain, South Korea, United Kingdom, United States), for a total of 42,170 individuals aged 54–105 y (42% male), including 3.3% with dementia at baseline. The studies began between 1989 and 2011, with all but three ongoing, and each had 2–16 assessment waves (median = 3) and a follow-up duration of 2–15 y. We analyzed standardized Mini-Mental State Examination (MMSE) and memory, processing speed, language, and executive functioning test scores using linear mixed models, adjusted for sex and education, and meta-analytic techniques. Performance on all cognitive measures declined with age, with the most rapid rate of change pooled across cohorts a moderate -0.26 standard deviations per decade (SD/decade) (95% confidence interval [CI] [-0.35, -0.16], p < 0.001) for processing speed. Rates of decline accelerated slightly with age, with executive functioning showing the largest additional rate of decline with every further decade of age (-0.07 SD/decade, 95% CI [-0.10, -0.03], p = 0.002). There was a considerable degree of heterogeneity in the associations across cohorts, including a slightly faster decline (p = 0.021) on the MMSE for Asians (-0.20 SD/decade, 95% CI [-0.28, -0.12], p < 0.001) than for whites (-0.09 SD/decade, 95% CI [-0.16, -0.02], p = 0.009). Males declined on the MMSE at a slightly slower rate than females (difference = 0.023 SD/decade, 95% CI [0.011, 0.035], p < 0.001), and every additional year of education was associated with a rate of decline slightly slower for the MMSE (0.004 SD/decade less, 95% CI [0.002, 0.006], p = 0.001), but slightly faster for language (-0.007 SD/decade more, 95% CI [-0.011, -0.003], p = 0.001). APOE*4 carriers declined slightly more rapidly than non-carriers on most cognitive measures, with processing speed showing the greatest difference (-0.08 SD/decade, 95% CI [-0.15, -0.01], p = 0.019). The same overall pattern of results was found when analyses were repeated with baseline dementia cases excluded. We used only one test to represent cognitive domains, and though a prototypical one, we nevertheless urge caution in generalizing the results to domains rather than viewing them as test-specific associations. This study lacked cohorts from Africa, India, and mainland China. Conclusions Cognitive performance declined with age, and more rapidly with increasing age, across samples from diverse ethnocultural groups and geographical regions. Associations varied across cohorts, suggesting that different rates of cognitive decline might contribute to the global variation in dementia prevalence. However, the many similarities and consistent associations with education and APOE genotype indicate a need to explore how international differences in associations with other risk factors such as genetics, cardiovascular health, and lifestyle are involved. Future studies should attempt to use multiple tests for each cognitive domain and feature populations from ethnocultural groups and geographical regions for which we lacked data

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
    corecore