1,008 research outputs found

    Abnormal susceptibility to distracters hinders perception in early stage Parkinson's disease: a controlled study

    Get PDF
    BACKGROUND: One of the perceptual abnormalities observed in Parkinson's disease (PD) is a deficit in the suppression of reflexive saccades that are automatically triggered by the onset of a peripheral target. Impairment of substantia nigra function is thought to lead to this reduced ability to suppress reflexive saccades. METHODS: The present study examined whether this perceptual deficit is also present in early stage PD when using hardly noticeable task-irrelevant stimuli. Eleven non-demented de novo, untreated PD patients (mean age 57 yr, range 44 – 70) participated in the study as well as 12 age-matched controls. Performance on an 'oculomotor capture' task, in which in half of the trials an irrelevant stimulus with sudden onset was added to the display, was compared between patients and controls. Analysis of variance (ANOVA) was performed with group (patients/controls) and age (< 61 yrs/β‰₯ 61 yrs) as independent factors and type of trial (control/distracter) as repeated measurements factor. The factor sex was used as covariate. RESULTS: With respect to Reaction Time (RT), a significant interaction between group and condition was found. RTs increased under the 'irrelevant stimulus' condition in both groups, the patients exhibiting a significantly larger increase in RTs than the control group. Also, a significant interaction effect between group and condition for number of correct responses was found. The number of correct responses was reduced in the onset distracter condition, the reduction being larger in the patients. In the patient group, contrary to the control group, a higher age was associated with fewer correct responses at baseline and in the onset distracter condition, suggesting that perceptual functions in PD are highly susceptible to the effects of ageing. The increased reaction times and larger number of incorrect responses of the PD patients in the onset distracter condition may be related to impairments of substantia nigra function and lower brain stem. CONCLUSION: The capture task seems to be a sensitive instrument to detect early perceptual deficits in PD. The magnitude of the observed deficits suggests that perceptual functions in early stage PD are so substantially impaired that this may interfere with daily activities

    Using reciprocity for relating the simulation of transcranial current stimulation to the EEG forward problem

    Get PDF
    To explore the relationship between transcranial current stimulation (tCS) and the electroencephalography (EEG) forward problem, we investigate and compare accuracy and efficiency of a reciprocal and a direct EEG forward approach for dipolar primary current sources both based on the finite element method (FEM), namely the adjoint approach (AA) and the partial integration approach in conjunction with a transfer matrix concept (PI). By analyzing numerical results, comparing to analytically derived EEG forward potentials and estimating computational complexity in spherical shell models, AA turns out to be essentially identical to PI. It is then proven that AA and PI are also algebraically identical even for general head models. This relation offers a direct link between the EEG forward problem and tCS. We then demonstrate how the quasi-analytical EEG forward solutions in sphere models can be used to validate the numerical accuracies of FEM-based tCS simulation approaches. These approaches differ with respect to the ease with which they can be employed for realistic head modeling based on MRI-derived segmentations. We show that while the accuracy of the most easy to realize approach based on regular hexahedral elements is already quite high, it can be significantly improved if a geometry-adaptation of the elements is employed in conjunction with an isoparametric FEM approach. While the latter approach does not involve any additional difficulties for the user, it reaches the high accuracies of surface-segmentation based tetrahedral FEM, which is considerably more difficult to implement and topologically less flexible in practice. Finally, in a highly realistic head volume conductor model and when compared to the regular alternative, the geometry-adapted hexahedral FEM is shown to result in significant changes in tCS current flow orientation and magnitude up to 45Β° and a factor of 1.66, respectively

    Electrical Stimulation of the Human Cerebral Cortex by Extracranial Muscle Activity: Effect Quantification With Intracranial EEG and FEM Simulations

    Get PDF
    Objective: Electric fields (EF) of approx. 0.2 V/m have been shown to be sufficiently strong to both modulate neuronal activity in the cerebral cortex and have measurable effects on cognitive performance. We hypothesized that the EF caused by the electrical activity of extracranial muscles during natural chewing may reach similar strength in the cerebral cortex and hence might act as an endogenous modality of brain stimulation. Here, we present first steps toward validating this hypothesis. Methods: Using a realistic volume conductor head model of an epilepsy patient having undergone intracranial electrode placement and utilizing simultaneous intracranial and extracranial electrical recordings during chewing, we derive predictions about the chewing-related cortical EF strength to be expected in healthy individuals. Results: We find that in the region of the temporal poles, the expected EF strength may reach amplitudes in the order of 0.1-1 V/m. Conclusion: The cortical EF caused by natural chewing could be large enough to modulate ongoing neural activity in the cerebral cortex and influence cognitive performance. Significance: The present study lends first support for the assumption that extracranial muscle activity might represent an endogenous source of electrical brain stimulation. This offers a new potential explanation for the puzzling effects of gum chewing on cognition, which have been repeatedly reported in the literature

    Bayesian Modelling of Skull Conductivity Uncertainties in EEG Source Imaging

    Get PDF
    Knowing the correct skull conductivity is crucial for the accuracy of EEG source imaging, but unfortunately, its true value, which is inter- and intra-individually varying, is difficult to determine. In this paper, we propose a statistical method based on the Bayesian approximation error approach to compensate for source imaging errors related to erronous skull conductivity. We demonstrate the potential of the approach by simulating EEG data of focal source activity and using the dipole scan algorithm and a sparsity promoting prior to reconstruct the underlying sources. The results suggest that the greatest improvements with the proposed method can be achieved when the focal sources are close to the skull

    Influence of head models on neuromagnetic fields and inverse source localizations

    Get PDF
    BACKGROUND: The magnetoencephalograms (MEGs) are mainly due to the source currents. However, there is a significant contribution to MEGs from the volume currents. The structure of the anatomical surfaces, e.g., gray and white matter, could severely influence the flow of volume currents in a head model. This, in turn, will also influence the MEGs and the inverse source localizations. This was examined in detail with three different human head models. METHODS: Three finite element head models constructed from segmented MR images of an adult male subject were used for this study. These models were: (1) Model 1: full model with eleven tissues that included detailed structure of the scalp, hard and soft skull bone, CSF, gray and white matter and other prominent tissues, (2) the Model 2 was derived from the Model 1 in which the conductivity of gray matter was set equal to the white matter, i.e., a ten tissuetype model, (3) the Model 3 consisted of scalp, hard skull bone, CSF, gray and white matter, i.e., a five tissue-type model. The lead fields and MEGs due to dipolar sources in the motor cortex were computed for all three models. The dipolar sources were oriented normal to the cortical surface and had a dipole moment of 100 ΞΌA meter. The inverse source localizations were performed with an exhaustive search pattern in the motor cortex area. A set of 100 trial inverse runs was made covering the 3 cm cube motor cortex area in a random fashion. The Model 1 was used as a reference model. RESULTS: The reference model (Model 1), as expected, performed best in localizing the sources in the motor cortex area. The Model 3 performed the worst. The mean source localization errors (MLEs) of the Model 3 were larger than the Model 1 or 2. The contour plots of the magnetic fields on top of the head were also different for all three models. The magnetic fields due to source currents were larger in magnitude as compared to the magnetic fields of volume currents. DISCUSSION: These results indicate that the complexity of head models strongly influences the MEGs and the inverse source localizations. A more complex head model performs better in inverse source localizations as compared to a model with lesser tissue surfaces

    A compilation of charged-particle induced thermonuclear reaction rates

    Get PDF
    Low-energy cross section data for 86 charged-particle induced reactions involving light (1 less than or equal to Z less than or equal to 14), mostly stable, nuclei are compiled. The corresponding Maxwellian-averaged thermonuclear reaction rates of relevance in astrophysical plasmas at temperatures in the range from 10(6) K to 10(10) K are calculated. These evaluations assume either that the target nuclei are in their ground state, or that the target states are thermally populated following a Maxwell-Boltzmann distribution, except in some cases involving isomeric states. Adopted values complemented with lower and upper limits of the rates are presented in tabular form. Analytical approximations to the adopted rates, as well as to the inverse/direct rate ratios, are provided. (C) 1999 Elsevier Science B.V. All rights reserved

    Sensitivity of MEG and EEG to Source Orientation

    Get PDF
    An important difference between magnetoencephalography (MEG) and electroencephalography (EEG) is that MEG is insensitive to radially oriented sources. We quantified computationally the dependency of MEG and EEG on the source orientation using a forward model with realistic tissue boundaries. Similar to the simpler case of a spherical head model, in which MEG cannot see radial sources at all, for most cortical locations there was a source orientation to which MEG was insensitive. The median value for the ratio of the signal magnitude for the source orientation of the lowest and the highest sensitivity was 0.06 for MEG and 0.63 for EEG. The difference in the sensitivity to the source orientation is expected to contribute to systematic differences in the signal-to-noise ratio between MEG and EEG.National Institutes of Health (U.S.) (Grant NS057500)National Institutes of Health (U.S.) (Grant NS037462)National Institutes of Health (U.S.) (Grant HD040712)National Center for Research Resources (U.S.) (P41RR14075)Mind Research Networ

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pTβ‰₯20 GeV and pseudorapidities {pipe}Ξ·{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}Ξ·{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}Ξ·{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. Β© 2013 CERN for the benefit of the ATLAS collaboration
    • …
    corecore