53 research outputs found

    Structural evidence for the partially oxidized dipyrromethene and dipyrromethanone forms of the cofactor of porphobilinogen deaminase: structures of the Bacillus megaterium enzyme at near-atomic resolution.

    Get PDF
    The enzyme porphobilinogen deaminase (PBGD; hydroxymethylbilane synthase; EC 2.5.1.61) catalyses an early step of the tetrapyrrole-biosynthesis pathway in which four molecules of the monopyrrole porphobilinogen are condensed to form a linear tetrapyrrole. The enzyme possesses a dipyrromethane cofactor, which is covalently linked by a thioether bridge to an invariant cysteine residue (Cys241 in the Bacillus megaterium enzyme). The cofactor is extended during the reaction by the sequential addition of the four substrate molecules, which are released as a linear tetrapyrrole product. Expression in Escherichia coli of a His-tagged form of B. megaterium PBGD has permitted the X-ray analysis of the enzyme from this species at high resolution, showing that the cofactor becomes progressively oxidized to the dipyrromethene and dipyrromethanone forms. In previously solved PBGD structures, the oxidized cofactor is in the dipyromethenone form, in which both pyrrole rings are approximately coplanar. In contrast, the oxidized cofactor in the B. megaterium enzyme appears to be in the dipyrromethanone form, in which the C atom at the bridging α-position of the outer pyrrole ring is very clearly in a tetrahedral configuration. It is suggested that the pink colour of the freshly purified protein is owing to the presence of the dipyrromethene form of the cofactor which, in the structure reported here, adopts the same conformation as the fully reduced dipyrromethane form

    Support for e-cigarette regulations among Australian young adults

    Get PDF
    Background: Surveying support for various regulatory options relating to e-cigarettes can assist policymakers to identify those that have broad support and are therefore likely to be easier to implement. However, data on support for potential e-cigarette regulations in Australia are limited. To inform regulatory efforts, the present study assessed attitudes to the regulation of e-cigarettes among Australian young adults, the most prevalent users of e-cigarettes and therefore the most likely population segment to be affected by e-cigarette regulations. Methods: A total of 1116 Australians aged 18 to 25 years (59% female) completed an online survey where they were presented with various statements relating to the regulation of e-cigarettes and asked to report on the extent to which they agreed or disagreed with each. Statements presented either a restrictive or non-restrictive approach to e-cigarette regulation. Results: Across all statements, 10-22% of respondents responded "don't know" while 23-35% neither agreed nor disagreed, indicating general ambivalence. There was a moderate level of support (33-37%) for regulating e-cigarette sales/use and treating e-cigarettes like tobacco products. Only 20% of respondents were in favour of allowing the use of e-cigarettes in smoke-free areas. Smokers, e-cigarette users, and those who did not believe in the harms associated with e-cigarettes were typically less likely than other respondents to support restrictive approaches. Conclusions: The young Australian adults surveyed were somewhat supportive of restrictions around the sale and use of e-cigarettes, but generally opposed outright bans and any need for a prescription from a medical practitioner. Increasing awareness of the harms associated with the use of e-cigarettes represents a potential strategy to gaining regulatory support

    Mapping enzyme-substrate interactions: its potential to study the mechanism of enzymes

    Get PDF
    With the increase of the need to use more sustainable processes for the industry in our society, the modeling of enzymes has become crucial to fully comprehend their mechanism of action and use this knowledge to enhance and design their properties. A lot of methods to study enzymes computationally exist and they have been classified on sequence-based, structure-based, and the more new artificial intelligence-based ones. Albeit the abundance of methods to help predict the function of an enzyme, molecular modeling is crucial when trying to understand the enzyme mechanism, as they aim to correlate atomistic information with experimental data. Among them, methods that simulate the system dynamics at a molecular mechanics level of theory (classical force fields) have shown to offer a comprehensive study. In this book chapter, we will analyze these techniques, emphasizing the importance of precise modeling of enzyme-substrate interactions. In the end, a brief explanation of the transference of the information from research studies to the industry is given accompanied with two examples of family enzymes where their modeling has helped their exploitation.Peer ReviewedObjectius de Desenvolupament Sostenible::9 - Indústria, Innovació i InfraestructuraPostprint (author's final draft

    Sediment geochemistry of streams draining abandoned lead / zinc mines in central Wales: the Afon Twymyn

    Get PDF
    Purpose Despite the decline of metal mining in the UK during the early 20th century, a substantial legacy of heavy metal contamination persists in river channel and floodplain sediments. Poor sediment quality is likely to impede the achievement of ’good’ chemical and ecological status for surface waters under the European Union Water Framework Directive. This paper examines the environmental legacy of the Dylife lead/zinc mine in the central Wales mining district. Leachable heavy metal concentrations in the bed sediments of the Afon Twymyn are established and the geochemical partitioning, potential mobility and bioavailability of sediment-associated heavy metals are established. Materials and methods Sediment samples were collected from the river bed and dry-sieved into two size fractions (<63 μm and 64–2,000 μm). The fractionated samples were then subjected to a sequential extraction procedure to isolate heavy metals (Pb, Zn, Cu, Cd, Fe, Mn) in three different geochemical phases. Sediment samples were then analysed for heavy metals using ICP-AES. Results and discussion The bed sediment of the Afon Twymyn is grossly polluted with heavy metals. Within the vicinity of the former mine, Pb concentrations are up to 100 times greater than levels reported to have deleterious impacts on aquatic ecology. Most heavy metals exist in the most mobile easily exchangeable and carbonate-bound geochemical phases, potentially posing serious threats to ecological integrity and constituting a significant, secondary, diffuse source of pollution. Metal concentrations decrease sharply downstream of the former mine, although there is a gradual increase in the proportion of readily extractable Zn and Cd. Conclusions Implementation of sediment quality guidelines is important in order to achieve the aims of the Water Framework Directive. Assessments of sediment quality should include measurements of background metal concentrations, river water physico-chemistry and, most importantly, metal mobility and potential bioavailability. Uniformity of sediment guidelines throughout Europe and flexibility of targets with regard to the most heavily contaminated mine sites are recommended
    corecore