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Abstract

With the increase of the need to use more sustainable processes for the industry in our society,
the modeling of enzymes has become crucial to fully comprehend their mechanism of action
and use this knowledge to enhance and design their properties. A lot of methods to study
enzymes computationally exist and they have been classified on sequence-based,
structure-based, and the more new artificial intelligence-based ones. Albeit the abundance of
methods to help predict the function of an enzyme, molecular modeling is crucial when trying to
understand the enzyme mechanism, as they aim to correlate atomistic information with
experimental data. Among them, methods that simulate the system dynamics at a molecular
mechanics level of theory (classical force fields) have shown to offer a comprehensive study. In
this book chapter, we will analyze these techniques, emphasizing the importance of precise
modeling of enzyme-substrate interactions. In the end, a brief explanation of the transference of
the information from research studies to the industry is given accompanied with two examples of
family enzymes where their modeling has helped their exploitation.
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1) Why modeling enzyme structure and dynamics

To face the current world challenges, human society has to adapt towards an eco-friendly based
economy, where industrial production transformation is a milestone. In the field of chemistry,
enzymes are becoming the alternative for inorganic catalysts, used in a wide variety of industrial
applications (Chapman et al., 2018; Schmid et al., 2001; Rajendra Singh et al., 2016). In
organisms, enzymes are the elements that make life kinetically possible. Otherwise, reactions
needed for life would occur at rates in which life and the current atmosphere and ecosystems
would not exist (Neet, 1998; Richard Wolfenden, 2006; R. Wolfenden & Snider, 2001). For
instance, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), the most abundant
enzyme on Earth (Dhingra et al., 2004), is the major catalyst involved in the carbon fixation of
carbon dioxide.

Enzymes can be of other macromolecular nature besides the proteic one, including catalytic
RNA and even designed catalytic DNA (Breaker, 1997; Guerrier-Takada et al., 1983; Kruger et
al., 1982). However, protein-based catalysts are the most abundant in nature due to the fact that
21 amino acids offer incredibly a lot more combinations in comparison with just 4 nitrogenous
bases (Böck et al., 1991; Doudna & Lorsch, 2005). As a result of this high variety of amino acids
and of the presence of cofactors in a big part of enzymes, a large number of catalyzed reactions
by enzymes exist. This wide variety of protein-based enzymes brings in different types of
activities along with many effects that can modulate them. In other words, enzyme activity is
affected by pH, temperature, ionic concentration, presence or absence of the cofactor, and by
the action of activator or inhibitor molecules (Robinson, 2015).
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Figure 1: Macromolecular nature of biocatalysis. The figure represents the types of
macromolecules where catalysis has been observed or designed, which are DNA, RNA, and
proteins. Protein-based catalysis is the most explored by nature, due to the larger options that
the number of residues and folding types give. At the bottom, the 7 types of global chemical
reactions catalyzed by enzymes (classification of Enzyme Commission number) are represented
with a 3D structure of each group. The rainbow labeling of the ribbon in all structures highlights
from the N-terminal (or 5' end in RNA) in red to the C-terminal (or 3' end in RNA) in violet. The
encircled enzyme is colored in green for the large subunit and in brown for the small one. The
DNA of the DNAzyme has each strand stained with a different color. The PDB codes for all
structures from the RNA-based to the Translocases are the following: 4OJI, 1GK8, 5XM9, 1CF3,
1TAQ, 6CVM, 1AHJ, 1IAT, 2HGS, and 6RFR.

Notwithstanding, the mechanisms and factors that give enzymes the ability to catalyze reactions
are still not fully comprehended (Knowles, 1991; Kraut, 1988). The widely known and most
accepted idea to explain enzyme catalysis is the transition state theory (TST) (Eyring, 1935;
Truhlar, 2015; Zinovjev & Tuñón, 2017). Enzymes can either decrease the Gibbs free energy of
activation (∆G‡) or increase the transmission coefficient (𝝹), accelerating the rate of the reaction
in comparison with an uncatalyzed reaction. Thus, enzymes either stabilize the transition state
(TS) of the reaction or they enhance the productive cross of the TS barrier by the reactants
(Agarwal, 2006; Truhlar, 2015; Zinovjev & Tuñón, 2017).
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Yet, the TST has some limitations, giving birth to other approaches and theories to study the
enzyme catalysis of a reaction such as the Marcus theory (Marcus, 1956; Zinovjev & Tuñón,
2017). Moreover, the concrete way in which enzymes decrease ∆G‡ or increase 𝝹 of the TST
remains a highly discussed topic. One of the important factors is the dynamics of proteins, which
seems to be the missing piece to understand how enzymes catalyze reactions (Agarwal, 2006;
Carvalho et al., 2014; Kamerlin & Warshel, 2010; Kohen, 2015; Petrović et al., 2018).
Experimental studies enable to check the activity of an enzyme, its specificity or promiscuity, its
optimal conditions, and even get the structure of the system. Still, a full mechanistic knowledge
requires the study of the protein dynamics and of the molecular interaction with the substrate, a
task that mandates the use of different computational methods (Carvalho et al., 2014).

Figure 2: The state of the art and the current issues related to biocatalysis. The figure
presents the typical free energy profile of a reaction uncatalyzed (in black) versus catalyzed (in
red) followed by arrows pointing towards the current issues in the TST. Enzymes tend to
decrease the value of ∆G‡, increasing the reaction rate. A global mechanism is the formation of
the enzyme-substrate (ES) complex, followed by the stabilization of the transition state (TS) of
the reaction in the active site (ETS), ending with the releasing of the product (P) from the
enzyme (EP). Enzymes can also increase the transmission coefficient (𝝹, the proportion of
reactive trajectories that surpass the TS barrier and end as products). The reaction coordinate is
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a metric that represents the progress of the reaction according to some geometric parameters
along the biochemical process.

The study of enzymes and their mechanisms has helped in comprehending evolution better, in
designing systems with enzymes to diagnose, treat, and cure several diseases, and in
synthesizing or refining a wide variety of materials and compounds, which are interesting for
different industrial sectors (Chapman et al., 2018; Robinson, 2015; Schmid et al., 2001;
Rajendra Singh et al., 2016). Some well-known examples include the use of glucose oxidase to
measure and monitor the blood glucose level in patients with diabetes mellitus (Yoo & Lee,
2010), the production of lactose-free milk by using lactase for lactose-intolerant people (Soares
et al., 2012), and the invention and success of the PCR technique (Mullis, 1990), which is
crucial at any laboratory working with molecular biology, thanks to the discovery of the
thermophile Thermus aquaticus DNA polymerase (Chien et al., 1976).

More examples are the synthesis of acrylamide, the precursor of the polymer famously used to
perform Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) and water
treatment (Laemmli, 1970; Smith & Oehme, 1991), is possible due to nitrile hydratase (Yamada
& Kobayashi, 1996) and the common features observed in the ATP-grasp enzymes. These
features are base residues to stabilize the 𝛼 and 𝛽-phosphates, an acid residue that forms a
hydrogen bond with the amino group in adenine, hydrophobic residues to stabilize adenine ring,
three acid residues to coordinate Mg2+ ions, and a shared catalytic mechanism (Galperin &
Koonin, 1997, 2012; Thoden et al., 1999).

Moreover, for many systems such a gain of knowledge has been largely promoted by in silico
studies. For instance, the design of DNA polymerases to accept unnatural nucleoside
triphosphates would not have been able without enzyme modeling (F. Chen et al., 2010; Dunn
et al., 2016). Thus, addressing the enzymatic mechanisms of action has significantly been
revamped through modeling their dynamics and enzyme-substrate interactions, leading to an
increased understanding of the system and better design of their potential applications.

2) A method for everybody

As the title of the section entails, a large amount of methods used in science can be applied to
the study of enzymes. Thus, enzymology requires physicists, mathematicians, and data
scientists, besides the chemists and biologists, which are the most associated with the field.
This chapter is focused on the computational tools used to study enzymes, many representative
methods are summarized in Table 1.

Computational methods use either the sequence, the structure or experimental data, through
analysis or simulations acting on it, to unveil the catalytic activity of enzymes; different levels
might reveal key (different) features of the mechanism of action. Moreover, data extracted from
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these methods (along with experimental one) give the option to use artificial intelligence (AI),
and more concretely machine learning (ML), to study them as well.

2.1 Sequence-based approaches

Even though enzymes tend to be studied using its 3D structure, a lot of information can be
extracted from its sequence. Still, all the knowledge is obtained by comparison with one or other
multiple sequences (Suplatov et al., 2015). The input of these techniques can be either the DNA
coding for the mRNA of the enzyme or the protein primary structure.

Enzyme sequences can be found in several databases, but the main and best curated ones are
NCBI and UniProtKB (National Center for Biotechnology Information, n.d.; UniProt Consortium,
2019). To search those homologous sequences to the query one in these databases, BLAST
(Basic Local Alignment Search Tool) is commonly used (Altschul et al., 1990). Albeit the
popularity of this algorithm of sequence comparison, many others exist including SSEARCH
(Pearson, 1991), USEARCH (Edgar, 2010), and SANS (Koskinen & Holm, 2012).

Once you have the set of selected homologous sequences, they can be aligned with different
multiple sequence alignment (MSA) tools like CLUSTAL (Higgins & Sharp, 1988; Thompson et
al., 1994), T-COFFEE (Notredame et al., 2000), and Kalign (Lassmann & Sonnhammer, 2005)
in which the progressive alignment approach is used (Feng & Doolittle, 1987). Other
approaches exist (Chowdhury & Garai, 2017; Daugelaite et al., 2013) and give room to other
popular MSA softwares such as MAFFT (Katoh et al., 2002) or MUSCLE (Edgar, 2004).

MSA gives a lot of hidden structural information of the enzyme including correlated residues in
the sequence that coevolve, the essential residues of the active site of a particular family of
enzymes, the less conserved residues in the structure of the protein, and thus, more prone to be
mutable. Thus, the comparison of homologous sequences with the studied one enables to
predict substantial information of the enzyme’s function. In fact, a lot of softwares used in
enzyme characterization and engineering use MSA as the input. Some examples include:
HotSpotWizard (Sumbalova et al., 2018), PoPMuSiC (Gilis & Rooman, 2000), or ConSurf server
(Ashkenazy et al., 2016) to name a few.

2.2 Structure-based approaches

Enzymes structural features are key to decipher the catalytic mechanism. Inside the tools
related with the structural rearrangement of the residues of the protein, two main groups have to
be made. The first and most global one is molecular modeling, which refers to methods aiming
at manipulating the structure of the molecules in a system at a particular level of theory of
physics to infer its properties. The other subgroup encompasses other tools that work with
structures at the level of analysis and data extraction, without performing large simulations, what
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is commonly known as structure-based bioinformatics. Still, the techniques of these two
subgroups can be combined to study enzymes.

The use of structure-based bioinformatics to study enzymes and their mechanism of action is
largely related with structural alignment, to compare two similar proteins (Godzik, 1996; Ma &
Wang, 2014), homology modeling to obtain a 3D structure from a target sequence and a
template structure (Chothia & Lesk, 1986; Martí-Renom et al., 2000), detection of cavities and
pockets (Le Guilloux et al., 2009), residue flexibility associated with the experimental B-factor (a
parameter related with thermal motion and it is obtained in X-ray crystallography) (Debye,
1913), prediction of substrate promiscuity (Martínez-Martínez et al., 2018), use of statistical
potentials to score and rank protein-ligand interactions (Fan et al., 2011; Mooij & Verdonk,
2005), and more.

2.2.1 Molecular modeling

Molecular modeling is one of the most widespread techniques to study (bio)chemical and
physical systems outside the wet laboratory. The methods can be classified either if they
simulate the system with classical physics (referring to the Newton’s laws), what it is called
molecular mechanics (MM) or if they take quantum physics (referring to the Schrödinger’s
equation) into consideration, what it is known as quantum mechanics (QM). The treatment of
the system in a more simple level of theory enables the computation to be less expensive
compared with using the level of theory of quantum physics. Nonetheless, a higher level of
theory returns more accurate calculi and better estimations of the user’s parameters of interest
(Jensen, 2007).

MM simplifies the system by treating atoms as the smallest and indivisible unit without taking
into account subatomic particles. Atoms are connected by bonds, which are considered
harmonic oscillators. This description of molecules with atoms and their bonds is known as the
“ball-and-stick” model. Thus, the potential energy of the system is parametrized according to the
atomic coordinates, the type of atoms, and the bonds made between them, what is commonly
known as force fields (FF).

The numerical values assigned to the constants of the energy terms, the functional form used,
and the number of parameters and terms taken into account is what defines and distinguishes a
FF from another. Thus, the accuracy of the energy calculation of the user’s system will depend
in principle on the applied FF; at a practical level most FF give similar results on standard
systems. FF are designed from experimental data or computational data obtained from a higher
level of theory, such as QM; a handful of widely used FF exist, including AMBER (Cornell et al.,
1995), CHARMM (Brooks et al., 1983), OPLS (Jorgensen et al., 1983), or GROMOS (van
Gunsteren & Berendsen, 1987).
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QM methods describe the system in the most inner part of particles, electrons and nuclei, and
the Schrödinger equation must be solved. Different ways to solve the Schrödinger equation exist
and they give room to different levels of accuracy and computational resources, depending on
the approximation used to solve it. Semi-empirical methods, for example, use experimental data
to reduce the computational cost of solving the Schrödinger equation; methods not using
empirical data are called ab initio methods. These include Density Functional Theory (DFT)
(Kohn & Sham, 1965) and Hartree Fock (HF) methods (Fock, 1930; Hartree, 1928). However,
these methods usually only consider the average interaction between electrons. There are more
precise methods that do take into account electron correlation, which are Configuration
Interaction (Head-Gordon et al., 1994), Møller–Plesset perturbation theory (Møller & Plesset,
1934), or Coupled Cluster (Purvis & Bartlett, 1982).

Therefore, MM enables the study of large systems over a long period of time, while QM gives an
accurate description of small systems at a stationary state or over (very) small periods of time.
Computational enzymology also takes advantage of both ways, QM/MM techniques, to describe
the system and to study its catalytic mechanism (Friesner & Guallar, 2005; Senn & Thiel, 2009;
van der Kamp & Mulholland, 2013). The active site residues, (the cofactor), and the substrate/s
are treated typically at the QM level and the rest of the system is described at the MM level.

Molecular modeling has led to two Nobel Prizes in Chemistry. One in 1998 for the development
of DFT and the computational methods for QM by Walter Kohn and John A. Pople, respectively.
The other in 2013 for the development of the QM/MM methods by Martin Karplus, Michael
Levitt, and Arieh Warshel.

Typical problems in computational chemistry require the exploration of the potential energy of a
system according to its spatial coordinates. The number of possible local minima, and thus,
number of possible stable configurations of a molecule increase exponentially as the number of
bonds increases (Howard & Kollman, 1988; Maranas & Floudas, 1994). This combinatorial
explosion problem gives room to several approaches including molecular dynamics (MD), Monte
Carlo (MC) methods, simulated annealing, genetic algorithms, diffusion methods, or distance
geometry methods. From these, MD and MC are the best to sample locally, finding a good
number of local minima. On the other hand, the remaining methods tend to be used to search
for the global minimum of the system.

The concept of these approaches and their application to solve real problems in computational
chemistry is a big topic. A lot of books and reviews exist to get further information (Hollingsworth
& Dror, 2018; Jensen, 2007; Karplus & McCammon, 2002; Lei & Duan, 2007; Lonsdale et al.,
2012; Maximova et al., 2016; Yang et al., 2016).

Thus, the availability of the enzyme structure enables the proper modeling of a conformational
sampling and/or dynamics related to the catalyzed reaction, gaining further insights of the key
residues involved with the mechanism of action and substrate binding. Later on, this knowledge
can be used to design a particular enzyme to enhance its activity against a specific family of
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substrates or to extend the conditions in which the enzyme can work (harsher pHs and
temperatures), what it is known as enzyme engineering.

2.3 AI-based approaches

In spite of the fact that AI is still entering the field of enzymology, several number of applications
to study protein properties in general have been developed (Larrañaga et al., 2006; Paladino et
al., 2017). One of the newest and most interesting ones refers to the AlphaFold built by Google
to predict the 3D structure of a protein with its sequence as the only input (Senior et al., 2020).
This method uses a convolutional neural network that predicts distance between residues and
torsions of the backbone of the protein structure from its sequence. With these predictions, a
protein-specific potential is created, and then, is further minimized by gradient descent,
obtaining the final predicted structure. Another related method refers to the one published by
AlQuraishi, which uses a recurrent neural network and parametrizes the local protein structure
into torsional angles that take into account covalent chemistry. Subsequently, the predicted local
protein structures are coupled into the overall protein structure with recurrent geometric units.
Finally, the model uses a differentiable loss function to score the predicted structure over the
experimental one and train the model. Thus, this model does not use co-evolution information
and shares similar results with other protein structure prediction algorithms (AlQuraishi, 2019).
The reach of predictions close to experimental structures would be a rather important aspect for
the field of computational enzymology, since it would enable to perform molecular modeling
studies of any enzyme, whether the experimental 3D structure is available or not.

The prediction of protein functions and the functional relevance of their amino acids in the 3D
structure is crucial to understand and design enzymes. In that regard, DeeProtein software has
been created, which also takes the sequence as input and infers the regions of the protein
sequence that are important for the biological activity (Belzen et al., 2019). Another model
regarding function has been created based on the available enzymes in the RCSB PDB to
predict the Enzyme Commission number (Amidi et al., 2018).

The prediction of the optimal pH range has also been accomplished with the use of ML (Khan et
al., 2015), which could be really useful in the field of enzyme engineering. Another model
consists in the prediction of the solubility of proteins based on their structure (Hou et al., 2020),
which could be useful to avoid the trial of computationally promising variants but that would
actually make the protein aggregate.

However, these techniques still need substantial improvement in order to really be used in the
main projects of research centers and enterprises working with enzymes. These needs are
often associated with the lack of enough high-quality datasets with no imbalances nor biases.
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Figure 3: Computational approaches to study an enzyme. The figure summarizes the
current methods used in computational enzymology to study catalytic mechanisms and more.
The input of all methods consists in one of the levels of protein structure, from the primary level
to the quaternary one. Thus, there are computational methods that work with the amino acid
sequence of the enzyme to search for homologous sequences, perform a MSA, and use its
information to infer properties of evolution/function (top right). Concerning the tertiary and
quaternary structure of proteins, there are mainly two types of methods, structural bioinformatics
and molecular modeling (bottom right). Lastly, the data obtained from computational and
experimental studies related with enzymes and proteins can be used to train ML models to
predict important features related with the mechanism of action of the enzyme (left). The
sequence and structure can be found in the following PDB code: 4K6G. The aligned structure in
the figure refers to this PDB code: 3GUU.

3) Enzymes mechanism: the potential of mapping
enzyme-substrate interactions

As stated in the previous section, there are a plethora of different techniques to study and
predict the relation between the sequence and/or structure with the function of enzymes.
Moreover, these methods are often used in combination with amino acid mutations, in order to
rationalize mechanistic data and, importantly, to design new variants with optimized (improved)
properties. Still, an exhaustive analysis of the enzymatic mechanism demands typically the use
of molecular modeling. Such study might be necessary when addressing substrate specificity,
activity, etc.; sequence tools typically reduce to classification and conservation analysis.

A comprehensive molecular analysis should include three main aspects: enzyme dynamics,
enzyme-substrate interactions, and electronic effects. The former aims at understanding the
global dynamics of the enzyme, thus the flexibility associated with the active site, opening
cavities, allosteric effects, etc. It is mainly studied through the use of MD and MC techniques



(Cossins et al., 2012); (simpler) coarse grain techniques, such as ANM, might offer an initial
quick view. The importance of an exhaustive dynamical study has been discussed in multiple
studies and reviews (Kamerlin & Warshel, 2010; Kohen, 2015). Electronic effects are obviously
addressed with QM techniques and are important when studying the chemical reactive step and
if addressing possible (non-reactive) polarization aspects. However, in this section we want to
underline the importance of an accurate analysis of enzyme-substrate interactions. Since we
developed the Protein Energy Landscape Exploration (PELE) software, a specialized
protein-ligand heuristic MC technique first introduced in 2005, we have applied it now to more
than 100 systems, with more than half of them being enzymes (Gilabert et al., 2018). Our
experience indicates that many properties can be studied with a robust analysis of how the
substrate migrates and interacts with the enzyme. Obviously this includes aspects such as
substrate specificity but also reactivity studies, typically studied with more expensive QM
techniques. In most of the attempted studies, we obtain a quantitative correlation of the
enzymatic efficiency constants from the (statistical) description of the active site
enzyme-substrate induced fit. Examples include comparing different substrates against the
same enzyme (and variations of it), as in a fungal aryl-alcohol oxidase (Serrano et al., 2019),
laccases (Monza et al., 2015; Pardo et al., 2016) and unspecific peroxidases (Molina-Espeja et
al., 2016)), or comparing the same substrate to different enzymes, as in unspecific peroxidases
(Aranda et al., 2019) and peroxygenases (F. Lucas et al., 2016). These studies all seem to
indicate the role of preorganization and near attack conformation (Hur & Bruice, 2003).

The sampling potential of PELE, capable of probing protein-ligand induced fit while mapping the
entire protein surface, also allows for advanced mechanistic studies. When studying two
different manganese peroxidases, for example, we could find that the ABTS active one binds
the substrate in an unexpected (and fully solvated) surface site, using two histidines as
electrostatic anchors. The inactive enzyme, however, did not show any significant predicted
binding sites, presenting and asparagine and a glycine at those surface positions. Introducing
these two solvent exposed mutations, we obtained in vitro ABTS activity in a similar fashion
(similar kcat and Km) to the active enzyme (Acebes et al., 2016) Global (full enzyme) substrate
binding explorations have also allowed adding artificial active sites in enzymes: the design of
PluriZymes. By identifying alternative substrate binding sites (complementary to the active site),
and turning them into additional active centers, after insertion of catalytic triads, we could
introduce a second hydrolase activity on several esterases (Santiago et al. 2018; Alonso et al.
2020).

Thus, it seems like obtaining an exhaustive structural sampling of the enzyme-substrate
interaction, even at the MM level of theory, seems to be a key aspect when addressing
enzymatic catalysis. Obviously, adding more sophisticated levels of theory, such as an
electronic description through mixed QM/MM techniques, might turn into a more robust analysis.
We have implemented such an approach when aiming at correlation between redox substrate
potential with enzymatic activity (M. F. Lucas et al., 2017), or when increasing a laccase
oxidation on a difficult to oxidize substrate, the aniline cation (Santiago et al., 2016). Still, we are
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turning more and more to exclusively using classical FF approaches when addressing
enzyme-substrate interactions for mechanistic and engineering studies (Figure 4).

Figure 4: Examples of engineering success cases based on substrate positioning studies using
classical force-fields. Introduced mutations are affecting the substrate position in the active site,
creating a more favorable environment (substrate positioning) or to find a binding site where to
create activity (PluriZymes). The substrate positioning panel has the substrate (aniline)
displayed with the CPK model and the active site residues are displayed with the thick tube
representation. The PluriZymes panel shows the protein scaffold and the zoomed areas
highlight the natural and added active sites with the catalytic triad, the oxyanion hole, and the
bound substrate predicted with PELE displayed with the thick tube representation. The PDB
codes used are 5ANH (to perform homology modeling) and 5JD4, respectively.

4) From modeling to engineering

In the previous section, we already explored the potential of using a dynamical enzyme
-substrate analysis to engineer enzymes. Here, we want to give a more broad perspective of
how modeling can help and ease the enhancement of enzyme properties. In fact, different
industrial sectors use the in silico modeling of enzymes combined with in vitro methods to



optimize their biocatalysts to real bioprocessing (Bornscheuer, U. T., & Pohl, M., 2001; Jemli et
al., 2016; Kirk et al., 2002; Lutz, 2010). For instance, a wide list of engineered and newly
characterized enzymes involved in the manufacturing of products of interest for the society
exist, including different type of hydrolases for the detergent industry, hydrolases and some
oxidoreductases for the food and beverage industry, and oxidoreductases, transferases,
hydrolases, lyases, and isomerases for the pharmaceutical industry, the organic synthesis, and
the waste management to name a few (Chapman et al., 2018; Rajendra Singh et al., 2016).

From the crystal structure (or homology model), key residues for substrate recognition can be
identified. These identified residues are mutagenesis targets with beneficial effects towards
enzyme activity, with some web tools already available for the in silico identification of these
hotspots, like Swiss‐Model (Schwede et al., 2003), Rosetta (Rohl et al., 2004), IntFOLD
(McGuffin et al., 2015), Threading ASSEmblyRefinement (I‐TASSER) (Roy et al., 2010), or
Protein Homology/AnalogY Recognition Engine (Phyre) (Kelley & Sternberg, 2009). This
approach is the first attempt to connect modeling with engineering.

The next step is to merge this structural information with the overall dynamic of the system. With
this combination, modeling has become a powerful tool for enzyme engineering, as we will see
in some examples focusing on cytochrome P450 (CYP) and transaminases (TA).

CYPs consist in a large superfamily of enzymes which can oxidize a broad range of substrates
aiming at different physiological roles such as biosynthesis of sterols and other secondary
metabolites or the clearance of toxic substances in the liver. Moreover, CYPs are enzymes that
have been extensively studied with well-known catalytic mechanism and fold, including the
heme cofactor (Denisov et al., 2005; Shaik et al., 2005). Thus, the knowledge of these
biocatalysts and their capacity to catalyze oxidations of structurally complex molecules
regioselectively and stereoselectively make them encouraging options for engineering of new
chemical reactions using computational-based methods. Although directed evolution has had
great success in the engineering of new chemistry in CYPs (Bajaj et al., 2016; K. Chen et al.,
2018; Farwell et al., 2015; Hernandez et al., 2016; Kan et al., 2016; Prier et al., 2017; Ritesh
Singh et al., 2015; Zhang et al., 2019), several studies of rational design aided with in silico
tools have been performed (Ba et al., 2013; Dodani et al., 2016; Hayashi et al., 2008; Jung et
al., 2018; Khatri et al., 2018; Rühlmann et al., 2017; Steck et al., 2020; Syed et al., 2013;
Toporkova et al., 2013).

The complex nature of these enzymes has given researchers to modify and engineer different
parts of the system including the substrate-binding active site, the substrate access channel, the
residues involved in binding the heme cofactor, and more. Besides, these studies retail more
insights of the structure-function relationships and have given substantial knowledge of the
mechanism of action of CYPs. One remarkable example is the one where MD simulations
revealed a key (unsolved crystallographically) loop that controlled its regioselectivity and by
analyzing the different possible states of the loop, they obtained a mutant that switched the
enzyme’s regioselectivity (Dodani et al., 2016). A recent paper used a mechanism-guided
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approach to design CYPs to substantially enhance their C-H amination (the best nitrene transfer
biocatalysts reported) by disrupting conserved structural elements related with the heme
cofactor (Steck et al., 2020). Another study uses a particular CYP and the binding poses of
progesterone predicted by molecular docking to engineer the regioselective hydroxylation of the
substrate with the products having different medical applications (Khatri et al., 2018). Many
other studies in CYPs use the information of the enzyme-substrate interactions obtained with
molecular docking to select those residues to mutate in order to enhance the selectivity or
activity towards a specific family of substrates (Ba et al., 2013; Hayashi et al., 2008; Jung et al.,
2018; Syed et al., 2013).

Despite the many industrial applications of CYPs, the electron source constant requirement is a
major limitation for full implementation. Constant amounts of expensive cofactors have to be
introduced in the reaction, just to keep CYP’s operating. But recently discovered unspecific
peroxidases (UPOs), might overcome CYPs. UPOs can speed up similar chemical reactions as
CYPs, but using hydrogen peroxide as an electron source, is cheaper and more accessible
compared to NADP (Freakley et al., 2019; Hofrichter & Ullrich, 2014; Hrycay & Bandiera, 2012).

Like in CYPs, UPOs have been recently studied using in silico methods to enhance their
reactivity, where their application towards fatty acids has been discussed. The study of substrate
positing has proved to be of extreme importance for UPOs, with a crucial role defining the
catalyzed reaction. The global dynamic behaviour of the enzyme and the enzyme-substrate
complex formation will be also relevant for UPOs engineering (Aranda et al., 2019).

Other families have been the target of similar studies, like TAs. TAs are a superfamily of
enzymes that catalyze the transfer of an amine group from a donor to an acceptor (usually a
ketone or aldehyde) by using pyridoxal 5’-phosphate (PLP) to perform the oxidative deamination
of the donor and the reductive amination of the acceptor (Ghislieri & Turner, 2014; Kelly et al.,
2018; Malik et al., 2012). TAs are classified according to the relative position of the amine group
to the carboxyl group of the substrate. ɑTAs require the presence of a carboxyl group next to the
C atom bound to the amine group, while ⍵TAs does not have this requirement, making them
more attractive for industrial bioprocessing due to the acceptance of a wider range of
substrates. The active site geometry of ⍵TAs is fully comprehended with a two-site binding
model with a large (L) and small (S) pocket (Shin & Kim, 2002). There is a concept of linking the
S pocket with the place involved in substrate binding but not with the catalysis, meaning that this
region could be redesigned to enhance the acceptance of bulkier residues by the TA (Park &
Shin, 2011). Still, the L pocket can be modified too (Dourado et al., 2016; Savile et al., 2010).

The in silico rational design of ⍵TAs to enhance chiral amine synthesis has thrived with several
examples. One of these successful cases refers to the engineering of a (R)-selective ⍵TA
binding pocket to accept prositagliptin (the precursor of sitagliptin, an antidiabetic drug). The key
mutation, G136F, changes the conformation of a loop near the active site, giving a broader
binding site with bigger volume (it enlarges the L pocket) (Guan et al., 2015). Then, it was
further evolved to gain activity against it. The result was a 10-13% increase in overall yield, 53%
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increase in productivity, and 19% reduction in total waste, making the biocatalytic process
replace the former rhodium-catalyzed asymmetric enamine hydrogenation, which needed toxic
heavy metals and implied more expensive costs (Savile et al., 2010).

In the case of (S)-selective ⍵TAs, a study has also accomplished their rational design to accept
bulky ketones with mutations aiming at enlarging the L pocket without compromising it, other
mutations decreasing the charges near the active site (due to the nonpolar nature of the used
ketone in the study), and a final mutation to improve the overall thermostability (Dourado et al.,
2016). The design of the variants was based on molecular docking, MD simulations, and further
structural analysis, highlighting the importance of modeling the interactions between the enzyme
and a specific substrate.

Other studies of rational engineering in ⍵TAs exist (Midelfort et al., 2013; Nobili et al., 2015;
Svedendahl et al., 2010) and all they share the fact that the computational analyses are based
on modeling the enzyme-substrate interactions with MM methods. Thus, the information these
methods provide have been key to develop these applications of ⍵TAs in the pharmaceutical
industry.

https://paperpile.com/c/YVwlmq/j5k3
https://paperpile.com/c/YVwlmq/mNkm
https://paperpile.com/c/YVwlmq/mNkm
https://paperpile.com/c/YVwlmq/gUoj+gonA+WGiQ
https://paperpile.com/c/YVwlmq/gUoj+gonA+WGiQ


Figure 5: Engineering of a ⍵TA to enable the synthesis of sitagliptin with the ketone
precursor. The top panel shows the asymmetric synthesis of sitagliptin with the use of
isopropylamine as amine donor. The bottom panel showcases both the WT and mutant dimer
structures with one chain (chain A) being represented with the surface labeled as residues
charge (blue being positively charged and red being negatively charged) and the other chain
(chain B) with ribbon representation, and the modified lysine and PLP are displayed with the
CPK model and the C atoms stained in orange. The zoomed region is one of the binding
pockets in both the WT and mutant enzymes; the critical residue (G136) that leads to the major
change is displayed with the CPK model and with C atoms stained in blue on the WT and in
green on the mutant. The color of the ribbon in chain A is red and blue in chain B in the WT
enzyme, while in the mutant the color of the ribbon in chain A is yellow and green in chain B.
The PDB codes for the WT and mutant enzymes are 3WWH and 3WWJ, respectively.

Finally, computational studies can also be applied when there is no enzyme as a starting point,
but still imposing an enzyme-substrate organization (Welborn & Head-Gordon, 2019); through a
de novo design. The transition states are used to build the active site (or theozyme) to be
completed with a protein scaffold. Next steps will be improving the binding mode of the active
site and further characterization and optimization of the new enzyme (Malisi et al., 2009). One of
the first attempts was a hydrolytic enzyme by Mayo in 2001 (Bolon & Mayo, 2001). More
complex catalysis were engineered, consisting in, for example, a nucleophilic cysteine–histidine
dyad with amides groups (backbones preferably) for oxyanion stabilization. The resulting
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enzymes were found to cleave activated ester substrates by a two-step acylation/deacylation
reaction (Richter et al., 2012). In spite of these success cases, the main computational de novo
design limitation still is the development of the required protein folding from scratch, typically
resulting in low activity enzymes.

Overall, we have attempted to give a quick overview of different in silico options providing
biocatalytic understanding and facilitating enzyme engineering, where we focused on underlying
the potential of methods mapping the enzyme-substrate interaction. Still these are mostly based
on molecular modeling and bioinformatic techniques. In the (possibly very) near future, however,
with the increase of experimental data and most likely with data augmentation from modeling,
we expect to see the rise of machine learning techniques. In one form or the other, one thing
appears clear to us, computational modeling will most likely guide most future engineering
efforts.
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Table 1: Recompilation of computational tools used to study enzyme mechanisms and
dynamics.
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https://paperpile.com/c/YVwlmq/SlL3
https://paperpile.com/c/YVwlmq/AkYl
https://paperpile.com/c/YVwlmq/AkYl
https://paperpile.com/c/YVwlmq/tn0g
https://paperpile.com/c/YVwlmq/tn0g
https://paperpile.com/c/YVwlmq/88Ex
https://paperpile.com/c/YVwlmq/88Ex
https://paperpile.com/c/YVwlmq/88Ex
https://paperpile.com/c/YVwlmq/88Ex
https://paperpile.com/c/YVwlmq/nWS5
https://paperpile.com/c/YVwlmq/nWS5
https://paperpile.com/c/YVwlmq/iesX
https://paperpile.com/c/YVwlmq/Xmwp
https://paperpile.com/c/YVwlmq/Xmwp
https://paperpile.com/c/YVwlmq/Xmwp


minimizati
on

the
minimized/
relaxed 3D
structure

of the
system

based on
classical

physics for
the vast

majority of
atoms and

on
quantum

physics for
the active

site.

atoms (MM
region).
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atoms (QM
region)

modeling (Cornell et al.,
1995),

CHARMM
(Brooks et al.,
1983), OPLS
(Jorgensen et

al., 1983),
GROMOS (van

Gunsteren &
Berendsen,

1987).
QM: Gaussian
(Binkley et al.,
1978), ORCA

(Neese, 2012),
Qsite (Philipp

& Friesner,
1999).

MD To
simulate

the
dynamical
behaviour

of the
system in

a particular
environme

nt over
time.

MM or
QM/MM

size limits

Days to weeks Molecular
modeling

AMBER
(Cornell et al.,

1995),
CHARMM

(Brooks et al.,
1983),

GROMOS (van
Gunsteren &
Berendsen,

1987),
Desmond

(Bowers et al.,
2006),

PLUMED
(Bonomi et al.,

2009),
Car–Parrinello

MD (Car &
Parrinello,

1985).

MC To explore
the

conformati
onal space

MM, QM,
or QM/MM
size limits

Hours to days Molecular
modeling

PELE (Borrelli
et al., 2005;

Car &
Parrinello,

https://paperpile.com/c/YVwlmq/SlL3
https://paperpile.com/c/YVwlmq/SlL3
https://paperpile.com/c/YVwlmq/AkYl
https://paperpile.com/c/YVwlmq/AkYl
https://paperpile.com/c/YVwlmq/tn0g
https://paperpile.com/c/YVwlmq/tn0g
https://paperpile.com/c/YVwlmq/88Ex
https://paperpile.com/c/YVwlmq/88Ex
https://paperpile.com/c/YVwlmq/88Ex
https://paperpile.com/c/YVwlmq/88Ex
https://paperpile.com/c/YVwlmq/nWS5
https://paperpile.com/c/YVwlmq/nWS5
https://paperpile.com/c/YVwlmq/iesX
https://paperpile.com/c/YVwlmq/Xmwp
https://paperpile.com/c/YVwlmq/Xmwp
https://paperpile.com/c/YVwlmq/Xmwp
https://paperpile.com/c/YVwlmq/SlL3
https://paperpile.com/c/YVwlmq/SlL3
https://paperpile.com/c/YVwlmq/AkYl
https://paperpile.com/c/YVwlmq/AkYl
https://paperpile.com/c/YVwlmq/88Ex
https://paperpile.com/c/YVwlmq/88Ex
https://paperpile.com/c/YVwlmq/88Ex
https://paperpile.com/c/YVwlmq/88Ex
https://paperpile.com/c/YVwlmq/hb5b
https://paperpile.com/c/YVwlmq/hb5b
https://paperpile.com/c/YVwlmq/mTm2
https://paperpile.com/c/YVwlmq/mTm2
https://paperpile.com/c/YVwlmq/Svii
https://paperpile.com/c/YVwlmq/Svii
https://paperpile.com/c/YVwlmq/Svii
https://paperpile.com/c/YVwlmq/Svii+Vnp3
https://paperpile.com/c/YVwlmq/Svii+Vnp3
https://paperpile.com/c/YVwlmq/Svii+Vnp3
https://paperpile.com/c/YVwlmq/Svii+Vnp3


of the
system

independe
ntly of
time.

1985), Spartan
(Lafayette &

Wiebelt, 2017),
Cassandra

(Shah et al.,
2017)

Molecular
docking

To see the
interaction
mode of a
molecule
bound to
another

molecule
(the

system).

MM size
limit

Seconds to
minutes

Molecular
modeling

AutoDock Vina
(Trott & Olson,
2010), GOLD
(Jones et al.,
1997), Glide

(Friesner et al.,
2004),

Haddock
(Dominguez et

al., 2003),
SwissDock

(Grosdidier et
al., 2011).

Protein
folding

prediction
from

sequence

To infer the
3D

structure
of a

protein
from its

sequence
of

residues.

50 - 300
residues

From minutes to
days (Training).
From seconds to
days (Prediction)

AI-based
approaches

AlphaFold
(Senior et al.,

2020)

https://paperpile.com/c/YVwlmq/Svii+Vnp3
https://paperpile.com/c/YVwlmq/8ps2
https://paperpile.com/c/YVwlmq/8ps2
https://paperpile.com/c/YVwlmq/3vsv
https://paperpile.com/c/YVwlmq/3vsv
https://paperpile.com/c/YVwlmq/WGNE
https://paperpile.com/c/YVwlmq/WGNE
https://paperpile.com/c/YVwlmq/GIhg
https://paperpile.com/c/YVwlmq/GIhg
https://paperpile.com/c/YVwlmq/kmTH
https://paperpile.com/c/YVwlmq/kmTH
https://paperpile.com/c/YVwlmq/Wbew
https://paperpile.com/c/YVwlmq/Wbew
https://paperpile.com/c/YVwlmq/aTTb
https://paperpile.com/c/YVwlmq/aTTb
https://paperpile.com/c/YVwlmq/6xhY
https://paperpile.com/c/YVwlmq/6xhY

