74 research outputs found
Adipocyte-derived factors impair insulin signaling in differentiated human vascular smooth muscle cells via the upregulation of miR-143
AbstractCardiovascular complications are common in patients with type 2 diabetes. Adipokines have been implicated in the induction of proliferative and pro-atherogenic alterations in human vascular smooth muscle cells (hVSMC). Other reports demonstrated the importance of the miRNA cluster miR-143/145 in the regulation of VSMC homeostasis and insulin sensitivity. Here we investigated whether the detrimental effects of adipokines on hVSMC function could be ascribed to alterations in miR-143/145 expression. The exposure of hVSMC to conditioned media (CM) from primary human subcutaneous adipocytes increased the expression of smooth muscle α-actin (SMA), and the miR-143/145 cluster, but markedly impaired the insulin-mediated phosphorylation of Akt and its substrate endothelial nitric oxide synthase (eNOS). Furthermore, CM promoted the phosphorylation of SMAD2 and p38, which have both been linked to miR-143/145 induction. Accordingly, the induction of miR-143/145 as well as the inhibition of insulin-mediated Akt- and eNOS-phosphorylation was prevented when hVSMC were treated with pharmacological inhibitors for Alk-4/5/7 and p38 before the addition of CM. The transfection of hVSMC with precursor miR-143, but not with precursor miR-145, resulted in impaired insulin-mediated phosphorylation of Akt and eNOS. This inhibition of insulin signaling by CM and miR-143 is associated with a reduction in the expression of the oxysterol-binding protein-related protein 8 (ORP8). Finally, the knock-down of ORP8 resulted in impaired insulin-mediated phosphorylation of Akt in hVSMC. Thus, the detrimental effects of adipocyte-derived conditioned media on insulin action in primary hVSMC can be ascribed to the Alk- and p38-dependent induction of miR-143 and subsequent downregulation of ORP8
Position-sensitive ion detection in precision Penning trap mass spectrometry
A commercial, position-sensitive ion detector was used for the first time for
the time-of-flight ion-cyclotron resonance detection technique in Penning trap
mass spectrometry. In this work, the characteristics of the detector and its
implementation in a Penning trap mass spectrometer will be presented. In
addition, simulations and experimental studies concerning the observation of
ions ejected from a Penning trap are described. This will allow for a precise
monitoring of the state of ion motion in the trap.Comment: 20 pages, 13 figure
The magic nature of 132Sn explored through the single-particle states of 133Sn
Atomic nuclei have a shell structure where nuclei with 'magic numbers' of
neutrons and protons are analogous to the noble gases in atomic physics. Only
ten nuclei with the standard magic numbers of both neutrons and protons have so
far been observed. The nuclear shell model is founded on the precept that
neutrons and protons can move as independent particles in orbitals with
discrete quantum numbers, subject to a mean field generated by all the other
nucleons. Knowledge of the properties of single-particle states outside nuclear
shell closures in exotic nuclei is important for a fundamental understanding of
nuclear structure and nucleosynthesis (for example the r-process, which is
responsible for the production of about half of the heavy elements). However,
as a result of their short lifetimes, there is a paucity of knowledge about the
nature of single-particle states outside exotic doubly magic nuclei. Here we
measure the single-particle character of the levels in 133Sn that lie outside
the double shell closure present at the short-lived nucleus 132Sn. We use an
inverse kinematics technique that involves the transfer of a single nucleon to
the nucleus. The purity of the measured single-particle states clearly
illustrates the magic nature of 132Sn.Comment: 19 pages, 5 figures and 4 table
TRIGA-SPEC: A setup for mass spectrometry and laser spectroscopy at the research reactor TRIGA Mainz
The research reactor TRIGA Mainz is an ideal facility to provide neutron-rich
nuclides with production rates sufficiently large for mass spectrometric and
laser spectroscopic studies. Within the TRIGA-SPEC project, a Penning trap as
well as a beam line for collinear laser spectroscopy are being installed.
Several new developments will ensure high sensitivity of the trap setup
enabling mass measurements even on a single ion. Besides neutron-rich fission
products produced in the reactor, also heavy nuclides such as 235-U or 252-Cf
can be investigated for the first time with an off-line ion source. The data
provided by the mass measurements will be of interest for astrophysical
calculations on the rapid neutron-capture process as well as for tests of mass
models in the heavy-mass region. The laser spectroscopic measurements will
yield model-independent information on nuclear ground-state properties such as
nuclear moments and charge radii of neutron-rich nuclei of refractory elements
far from stability. This publication describes the experimental setup as well
as its present status.Comment: 20 pages, 17 figure
Proline-rich Akt substrate of 40-kDa contains a nuclear export signal
Signal transduction in aging related disease
- …