74 research outputs found

    Adipocyte-derived factors impair insulin signaling in differentiated human vascular smooth muscle cells via the upregulation of miR-143

    Get PDF
    AbstractCardiovascular complications are common in patients with type 2 diabetes. Adipokines have been implicated in the induction of proliferative and pro-atherogenic alterations in human vascular smooth muscle cells (hVSMC). Other reports demonstrated the importance of the miRNA cluster miR-143/145 in the regulation of VSMC homeostasis and insulin sensitivity. Here we investigated whether the detrimental effects of adipokines on hVSMC function could be ascribed to alterations in miR-143/145 expression. The exposure of hVSMC to conditioned media (CM) from primary human subcutaneous adipocytes increased the expression of smooth muscle α-actin (SMA), and the miR-143/145 cluster, but markedly impaired the insulin-mediated phosphorylation of Akt and its substrate endothelial nitric oxide synthase (eNOS). Furthermore, CM promoted the phosphorylation of SMAD2 and p38, which have both been linked to miR-143/145 induction. Accordingly, the induction of miR-143/145 as well as the inhibition of insulin-mediated Akt- and eNOS-phosphorylation was prevented when hVSMC were treated with pharmacological inhibitors for Alk-4/5/7 and p38 before the addition of CM. The transfection of hVSMC with precursor miR-143, but not with precursor miR-145, resulted in impaired insulin-mediated phosphorylation of Akt and eNOS. This inhibition of insulin signaling by CM and miR-143 is associated with a reduction in the expression of the oxysterol-binding protein-related protein 8 (ORP8). Finally, the knock-down of ORP8 resulted in impaired insulin-mediated phosphorylation of Akt in hVSMC. Thus, the detrimental effects of adipocyte-derived conditioned media on insulin action in primary hVSMC can be ascribed to the Alk- and p38-dependent induction of miR-143 and subsequent downregulation of ORP8

    Position-sensitive ion detection in precision Penning trap mass spectrometry

    Get PDF
    A commercial, position-sensitive ion detector was used for the first time for the time-of-flight ion-cyclotron resonance detection technique in Penning trap mass spectrometry. In this work, the characteristics of the detector and its implementation in a Penning trap mass spectrometer will be presented. In addition, simulations and experimental studies concerning the observation of ions ejected from a Penning trap are described. This will allow for a precise monitoring of the state of ion motion in the trap.Comment: 20 pages, 13 figure

    The magic nature of 132Sn explored through the single-particle states of 133Sn

    Full text link
    Atomic nuclei have a shell structure where nuclei with 'magic numbers' of neutrons and protons are analogous to the noble gases in atomic physics. Only ten nuclei with the standard magic numbers of both neutrons and protons have so far been observed. The nuclear shell model is founded on the precept that neutrons and protons can move as independent particles in orbitals with discrete quantum numbers, subject to a mean field generated by all the other nucleons. Knowledge of the properties of single-particle states outside nuclear shell closures in exotic nuclei is important for a fundamental understanding of nuclear structure and nucleosynthesis (for example the r-process, which is responsible for the production of about half of the heavy elements). However, as a result of their short lifetimes, there is a paucity of knowledge about the nature of single-particle states outside exotic doubly magic nuclei. Here we measure the single-particle character of the levels in 133Sn that lie outside the double shell closure present at the short-lived nucleus 132Sn. We use an inverse kinematics technique that involves the transfer of a single nucleon to the nucleus. The purity of the measured single-particle states clearly illustrates the magic nature of 132Sn.Comment: 19 pages, 5 figures and 4 table

    TRIGA-SPEC: A setup for mass spectrometry and laser spectroscopy at the research reactor TRIGA Mainz

    Full text link
    The research reactor TRIGA Mainz is an ideal facility to provide neutron-rich nuclides with production rates sufficiently large for mass spectrometric and laser spectroscopic studies. Within the TRIGA-SPEC project, a Penning trap as well as a beam line for collinear laser spectroscopy are being installed. Several new developments will ensure high sensitivity of the trap setup enabling mass measurements even on a single ion. Besides neutron-rich fission products produced in the reactor, also heavy nuclides such as 235-U or 252-Cf can be investigated for the first time with an off-line ion source. The data provided by the mass measurements will be of interest for astrophysical calculations on the rapid neutron-capture process as well as for tests of mass models in the heavy-mass region. The laser spectroscopic measurements will yield model-independent information on nuclear ground-state properties such as nuclear moments and charge radii of neutron-rich nuclei of refractory elements far from stability. This publication describes the experimental setup as well as its present status.Comment: 20 pages, 17 figure
    • …
    corecore