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Cardiovascular complications are common in patients with type 2 diabetes. Adipokines have been implicated in
the induction of proliferative and pro-atherogenic alterations in human vascular smooth muscle cells (hVSMC).
Other reports demonstrated the importance of the miRNA cluster miR-143/145 in the regulation of VSMC
homeostasis and insulin sensitivity. Here we investigated whether the detrimental effects of adipokines on
hVSMC function could be ascribed to alterations in miR-143/145 expression. The exposure of hVSMC to condi-
tioned media (CM) from primary human subcutaneous adipocytes increased the expression of smooth muscle
α-actin (SMA), and the miR-143/145 cluster, but markedly impaired the insulin-mediated phosphorylation of
Akt and its substrate endothelial nitric oxide synthase (eNOS). Furthermore, CM promoted the phosphorylation
of SMAD2 and p38, which have both been linked to miR-143/145 induction. Accordingly, the induction of
miR-143/145 as well as the inhibition of insulin-mediated Akt- and eNOS-phosphorylation was prevented
when hVSMC were treated with pharmacological inhibitors for Alk-4/5/7 and p38 before the addition of CM.
The transfection of hVSMC with precursor miR-143, but not with precursor miR-145, resulted in impaired
insulin-mediated phosphorylation of Akt and eNOS. This inhibition of insulin signaling by CM and miR-143 is
associated with a reduction in the expression of the oxysterol-binding protein-related protein 8 (ORP8). Finally,
the knock-down of ORP8 resulted in impaired insulin-mediated phosphorylation of Akt in hVSMC. Thus, the
detrimental effects of adipocyte-derived conditioned media on insulin action in primary hVSMC can be ascribed
to the Alk- and p38-dependent induction of miR-143 and subsequent downregulation of ORP8.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Cardiovascular complications are common in patients with type 2 di-
abetes and amajor cause of mortality [12]. Accumulating evidence shows
that adipose tissue secreted factors, termed adipokines,may participate in
the development of cardiovascular complications in patients with type 2
diabetes by affecting the function of cardiomyocytes and smooth muscle
cells (SMC) [11,20,29].

Vascular endothelial cells and SMC represent the major cell types of
the artery wall preserving vessel wall homeostasis. SMC are highly
plastic and modulate their phenotype in response to physiological and
pathological cues. Differentiated SMC are quiescent and contractile.
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In response to vascular injury or growth factor signaling, SMC de-
differentiate and adopt a proliferative, migratory phenotype that
contributes to vascular occlusion in a variety of disorders, including
atherosclerosis [27]. Alterations in vascular insulin signaling may
also participate in the development of cardiovascular dysfunction in
type 2 diabetes. The insulin-mediated activation of phosphatidylinositol
3′-kinase (PI3K) results in the activation of Akt, which on its turn
promotes the phosphorylation of endothelial nitric oxide synthase
(eNOS) [24]. This results in activation of eNOS and an increase in bio-
available nitric oxide (NO) thereby promoting vasodilation [24]. In the
vasculature of animalmodels of insulin resistance, such as obese Zucker
(fa/fa) rats, the insulin-mediated activation of the PI3K-pathway is
impaired [16]. Intriguingly, this is paralleled by an overactivation of
the mitogen activated protein kinase (MAPK) pathway, which on its
turn promotes proliferation of vascular cells [16,24]. Studies on mouse
models which lack the insulin receptor in either the endothelium or
the entire vasculature have further highlighted the importance of vascu-
lar insulin action, and specifically the Akt/eNOS-axis, for the regulation
of vasorelaxation in vivo [9,30].
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Previously we showed that conditioned media (CM) prepared from
human adipocytes induce pro-atherogenic changes in primary human
vascular smooth muscle cells (hVSMC) as illustrated by an increase
in proliferation and migration, thus indicating an involvement of
adipokines in the development of atherosclerosis [20,29]. However,
until now the underlying mechanisms, which are responsible for
hVSMC dysfunction induced by adipokines remain incompletely
understood. In cardiomyocytes, we observed that conditioned media
generated from epicardial adipose tissue from patients with type 2 dia-
betes induce cardiomyocyte dysfunction as illustrated by contractile
dysfunction and insulin resistance [11]. Furthermore, we found that
the induction of insulin resistance in cardiomyocytes could be ascribed
to the increases inmiR-143 expression [1]. Also in other tissues, such as
the liver and adipose tissue, the induction of miR-143 is associated with
obesity and insulin resistance [18,31]. Interestingly, miR-143 and the
co-transcribed miR-145 are highly expressed in the smooth muscle
cell lineage [2]. Studies on miR143/145-deficient mice showed that
this cluster is required for the acquisition of the contractile phenotype
[2]. This is established through the activation of a transcriptional
network, which promotes the differentiation of smooth muscle cells
[8]. Among the genes targeted by the miR-143/145-cluster are the
smooth muscle differentiation markers transgelin (TAGLN, also known
as SM22), and smooth muscle α-actin (SMA) [8]. These observations
suggest a dual role for the miR-143/145 in vascular smooth
muscle cells. Therefore the aim of this study is to examine the role of
the miR-143/145-cluster in primary human vascular smooth muscle
cells (hVSMC) in more detail. This was achieved by studying the effects
of CM on the expression of the miR-143/145-cluster and its potential
target genes, and whether these effects associate with alterations in
insulin action.

2. Material and methods

2.1. Cell culture and differentiation of smooth muscle cells

Primary human coronary artery smooth muscle cells (hVSMC) from
two different donors (Caucasian, female, 55 and 56 years old) were
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Fig. 1.Effect of conditionedmedia onmiRNAand geneexpression inprimaryhuman vascular sm
and levels of miR-143 (A), miR-145 (B), smooth muscle actin (SMA) (C), transgelin (TAGLN) (
independent experiments using 2 different donors and CM from 8 different preparations, an
were evaluated using student's t-test. ***, indicates P b 0.001 versus control medium.
purchased from tebu-bio (Offenbach, Germany) and Lonza (Basel,
Switzerland). The hVSMC were supplied as proliferating cells and cul-
tured according to the manufacturers' instructions. For experiments,
differentiation was induced culturing the subconfluent cells of passage
3 for 14 days in smooth muscle cell differentiation medium (tebu-bio,
Offenbach, Germany). The transition from the undifferentiated to the
differentiated phenotype was judged on the basis of increases in the
protein abundance of smooth muscle cell differentiation markers, such
as SMA, the transforming growth factor β (TGFβ) receptor II, and the
bone morphogenic protein receptor II [8,13], as well as the lack of
proliferation. Following differentiation, hVSMC were incubated for
24 h in adipocyte-derived conditioned media or maintained in SMC
serum-free basal medium (PromoCell, Heidelberg Germany). When in-
dicated cells were treated for 1 hwith 10 μMSB431542 (Sigma Aldrich,
St. Louis, MO) or 2.5 μM SB203580 (Promega, Mannheim, Germany)
prior to the addition of the media. For insulin signaling, the cultures
were stimulated for 10 min with 100 nM insulin.

2.2. Adipocyte isolation, culture and generating of conditioned media

Conditioned media (CM) were generated from mature subcutane-
ous adipocytes that were differentiated from pre-adipocytes isolated
from subcutaneous adipose tissue obtained from lean or moderately
overweight women (n = 13, body mass index 28.1 ± 1.3, and aged
39.0 ± 3.9 years) undergoing plastic surgery. The procedure was
approved by the ethical committee of the Heinrich-Heine-University
(Düsseldorf, Germany). All patients were healthy, free of medication
and had no evidence of metabolic diseases according to routine labora-
tory tests. Pre-adipocytes were isolated by collagenase digestion of adi-
pose tissue as described [14]. Isolated pre-adipocyteswere resuspended
in Dulbecco's modified Eagles/Hams F12 (DMEM/F12) medium supple-
mented with 10% FCS, seeded in 75 cm2 culture flasks and maintained
at 37 °C with 5% CO2. After overnight incubation, cultures were washed
and further incubated in an adipocyte differentiation medium (DMEM/
F12, 33 μmol/l biotin, 17 μmol/l D-pantothenic-acid, 66 nM insulin,
1 nM triiodo-L-thyronine, 100 nM cortisol, 10 μg/ml apo-transferrin,
50 μg/μl gentamycin, 15 mmol/l HEPES, 14 nmol/l NaHCO3, pH 7.4)
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for 15 days with medium change every 2–3 days and addition of 5 μM
troglitazone for the first 3 days. For the collection of CM, differentiated
adipocytes were maintained for 48 h in SMC serum free basal medium
(PromoCell) with the addition of 50 ng/ml fungizone and 50 μg/ml
gentamycin. Then CM was collected and stored as aliquots at −80 °C
until further use.

2.3. Analysis of protein expression

For analysis of protein expression and phosphorylation, hVSMC
were lysed in 50 mM HEPES, pH 7.4, 1% TritonX100 supplemented
with protease andphosphatase inhibitor cocktails (Complete, PhosStop;
Roche Diagnostics, Mannheim, Germany). After incubation for 2 h at
4 °C on a rotation shaker, the suspension was centrifuged at 10,000 g
for 15 min, and protein contentwas determined using Bradford reagent
(Biorad Laboratories, Munich, Germany). Thereafter, five microgram of
protein was separated by SDS-PAGE and transferred to polyvinylidene
fluoride membranes (Millipore, Schwalbach, Germany) in a semi-dry
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Fig. 2. Effect of conditioned media on insulin action in primary human vascular smooth mu
kept untreated (−) or stimulated for 10 min with 100 nM insulin (+). Shown are represen
(A), Akt-Ser-473 (B), eNOS-Ser1177 (C), and PRAS40-Thr246 (D). Phosphorylation levels norm
pendent experiments using cells from 2 different donors and CM from 8 different preparations
###, and # indicate P b 0.001 and P b 0.05, respectively, for the effect of insulin (+) versus ce
blotting apparatus [36]. Membranes were blocked with Tris-buffered
saline containing 0.1% Tween and 5% non-fat drymilk and subsequently
incubated overnight at 4 °C with primary antibodies for Akt, phospho-
Akt-Ser473, phospho-Akt-Thr308, phospho-proline-rich Akt substrate
of 40-kDa (PRAS40) Thr246, phospho-p38-Thr180/Tyr182, phospho-
SMAD2-Ser465/467 (all from Cell Signaling Technology, Danvers, MA,
USA), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), oxysterol-
binding protein-related protein 8 (ORP-8) (abcam Cambridge, UK),
smooth muscle α-actin (Sigma Aldrich), α-tubulin (Calbiochem Merck
Biosciences, Schwalbach, Germany) insulin receptor β-subunit (IRβ),
and phospho-eNOS-Ser1177 (Santa Cruz Biotechnology, Santa Cruz, CA,
USA). After washing, membranes were incubated with corresponding
secondary HRP-coupled antibody (Promega). Bound conjugate was
detected using enhanced chemiluminescence using Immobilon HRP
substrate (Millipore, Billerica, MA, USA). Signals were visualized
and quantitated on a Versadoc work station (VersaDoc 4000 MP;
BioRad, Munich, Germany) using Quantity One software (BioRad,
version 4.6.7).
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2.4. RNA isolation, cDNA synthesis and qRT-PCR

For analysis ofmiRNA- andmRNAexpression, total RNAwas extract-
ed using a miRNeasy mini kit (Qiagen, Hilden, Germany) and reverse
transcribed using the miScript RT kit (Qiagen). Then miRNA expression
levels were determined with miScript Primer Assays (Qiagen) using
miScript SYBR Green (Qiagen) on a StepOne Plus real-time PCR system
(Applied Biosystems, Carlsbad, CA, USA). Gene expression levels were
determined after cDNA synthesis with the GoScript™ Reverse Tran-
scription System (Promega) and GoTaq® qPCR Master Mix (Promega)
using QuantiTect Primer Assays (Qiagen) for the amplification of SMA,
TAGLN, PAI-1, MCP-1, activin A, and POLR2A. To amplify RPS28 the fol-
lowing primers were designed using the Primerblast-tool (http://www.
ncbi.nlm.nih.gov/tools/primer-blast/) and ordered from Eurogentec
(Seraing, Belgium): forward-5′-GGTCTGTCACAGTCTGCTCC-3′, and
reverse-5′-CATCTCAGTTACGTGTGGCG-3′. Real-time PCR data were
analyzed qualitatively with StepOne Plus software (version 2.1; Applied
Biosystems) and quantitated using Qbase+ software (version 2.6;
Biogazelle, Zwijnaarde, Belgium) in which the Ct-values obtained for
RPS28 and POLR2A were used for normalization. The expression of
RPS28 and POL2RA was not impacted by the experimental conditions
tested as assessed with the GeNorm algorithm within the Qbase+
software [35].

2.5. Transfection of hVSMC with miRNA-precursor

To investigate the impact of differentially regulated miRNAs and
their potential targets on insulin action, differentiated hVSMC were
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media or conditioned media (CM) for 24 h. Shown are representative Western blots and qua
Tyr182 (B). Phosphorylation levels normalized for α-tubulin are expressed as mean ± stand
and CM from 7 different preparations. Differences between the groups were evaluated using s
exposed to DMSO (vehicle), or pharmacological inhibitors for Alk4/5/7 (SB431542), or p38 (SB2
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transfected in 6-well dishes with 30 nmol/l Cy3™-labeled pre-miR™
(negative control) or pre-miR™ miRNA-precursor (Ambion, Life
Technologies, Darmstadt, Germany) using Hiperfect (Qiagen) as trans-
fection reagent. 48 h after transfection in SMC serum free basalmedium
(PromoCell) cells are stimulated with insulin and lysed for protein
isolation and western blot analysis.

2.6. Lentiviral vector-based silencing of ORP8

To silence ORP8, three validated MISSION® shRNA constructs
(TRCN000014 -6765, -7289 -7487) targeting human ORP8 (NM_
020841) (Sigma Aldrich) or empty vector were used to produce infec-
tious virus particles (LV). Therefore, HEK293t were transfected with
the shRNA constructs together with helper plasmids encoding HIV-1
gag-pol, HIV-1 rev, and the VSV-G envelope as described previously
[4]. For quantification of virus yield in the harvested medium, p24 anti-
gen levels were determined using a HIV-1 p24 antigen enzyme-linked
immunosorbent assay (ELISA) kit (ZeptoMetrix Corp., New York, NY,
USA). hVSMC are transduced with a MOI of 2 for 24 h. Two days after
transduction of hVSMC in serum free basal medium (PromoCell), cells
were stimulated with 100 nM insulin for 10 min or kept untreated,
and harvested.

2.7. Statistical analysis

Data are presented as means ± standard error of the mean. Signifi-
cant differences between experimental conditions were evaluated as
described in the legends to the tables and the figures using GraphPad
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Prism 6 for Mac OS X (GraphPad, LA Jolla, CA) software. P-values of
b0.05 were considered as statistically significant.
3. Results

3.1. Effects of adipocyte-derived factors on primary human vascular smooth
muscle cells

The exposure of hVSMC to CM increased the expression of the
miR-143/145 cluster by 1.3-fold (P b 0.001) as compared to cells
kept in control medium (Fig. 1 A/B). Furthermore, CM increased the
mRNA levels of the miR-143/145 regulated targets SMA and TAGLN by
2.6-fold and 2.0-fold respectively, and of the pro-inflammatory
cytokines PAI-1 and MCP-1 by 3.1- and 2.8-fold, respectively
(all P b 0.001) (Fig. 1 C/F). Exposing hVSMC to CM inhibited the
insulin-mediated phosphorylation of Akt on Thr308 and Ser473, and
its substrates eNOS on Ser1177, and PRAS40 on Thr246 by 53%, 44%,
37%, and 36% respectively versus cells kept in control medium
(all P b 0.001) (Fig. 2). Incubation with CM did not affect the basal
phosphorylation levels of these proteins (Fig. 2).
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3.2. Effect of inhibition of TGFβ receptor- and p38-signaling on the
CM-induced expression of miR-143/145 and inhibition of insulin action
in hVSMC

A previous report ascribed the induction of themiR-143/145 cluster
in hVSMC to the activation of the p38-signaling pathway by TGFβ [22].
Fig. 3A/B shows that the phosphorylation of SMAD2, a component of
the TGFβ receptor signaling pathway, as well as the phosphorylation
of p38 were increased by 3.9- and 5.1-fold, respectively in hVSMC ex-
posed to CM versus cells kept in control medium. To examine whether
the TGFβ receptor- and p38-signaling pathway(s) participate in the
induction of the miR-143/145 cluster, pharmacological inhibitors were
used. Pretreating the hVSMC with either SB431542, which inhibits the
TGFβ type I receptors ‘Activin Receptor-Like Kinase’ (ALK) 4, 5 and -7,
or with the p38 inhibitor SB203580, completely abolished the induction
the miR-143/145-cluster by CM in hVSMC (Fig. 3C/D). Furthermore,
the inhibition of insulin-induced phosphorylation of Akt-Thr308, Akt-
Ser473, eNOS-Ser1177, and PRAS40-Thr246 by CM was reversed in
hVSMC incubated with either SB431542 or SB203580 before exposure
to CM (Fig. 4). Both inhibitors also blunted the induction of TAGLN in
hVSMC by CM (supplementary Fig. 1). However, in contrast to the
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effects on the miRNA-143/145 cluster and insulin action, the inhibitors
did not or only partially prevent the induction of SMA, PAI-1 and
MCP-1 in hVSMC by CM (supplementary Fig. 1).

3.3. Effect of miR-143 and miR-145 overexpression on insulin signaling

To investigate the impact of the miR-143/145 cluster on insulin
action, hVSMC were transfected with precursors for miR-143 and
miR-145, respectively. In line with a previous report [8], SMA protein
abundance was increased in cells transfected with pre-miR-143 and
pre-miR-145 by 9.0- and 2.0-fold respectively versus cells transfected
with control pre-miR (P b 0.05) (Fig. 5A). Insulin-stimulated phosphor-
ylation of Akt-Thr308, Akt-Ser473, and eNOS-Ser1177 was reduced by
42%, 44%, and 39%, respectively, in cells transfected with pre-miR-143
versus cells transfected with control pre-miR (Fig. 5B–D). In contrast,
transfection with pre-miR-145 did not affect insulin action (Fig. 5B–D).

Several reports have linked miR-143 to an inhibition of insulin
signaling through downregulation of ORP8. As shown in Fig. 6A, the
transfection of hVSMC with pre-miR-143 reduced ORP8 protein levels
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Fig. 5. Effect of miR-143 and miR-145 expression on insulin action in primary human vascular s
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on cells from two different donors. Differences among the experimental conditionswere evaluate
analysis. ###, indicates P b 0.001 for the effect of insulin versus untreated cells; ‡‡‡, P b 0.001;
by 25% (P b 0.01) versus cells transfected with either control pre-miR
or pre-miR-145. Also exposure to CM lowered ORP8 levels by 30%
(P b 0.01) versus cells kept in control medium, and this reduction in
ORP8 abundance was not observed in hVSMC treated with either
SB431542 or SB203580 prior to exposure to the CM (Fig. 6B). To exam-
ine whether the downregulation of ORP8 impairs insulin signaling in
hVSMC, cells were transduced with lentiviruses encoding control
shRNA or shRNA for ORP8. A 30% decrease in ORP8 abundance, which
is comparable to that achieved by expression of miR-143 or exposure
to CM, was found to inhibit insulin-mediated Akt-Ser473 phosphoryla-
tion by 25% (Fig. 6C/D).

4. Discussion

The present study shows that adipocyte-derived factors impair
insulin signaling in hVSMC. Exposing the hVSMC to adipocyte-derived
conditioned media was found to increase the expression of miR-143.
The resulting decrease in the expression of the validatedmiR-143 target
ORP8 resulted in inhibition of the insulin-mediated phosphorylation of
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Akt/eNOS-signaling pathway. Furthermore, the activation of the
miR-143/ORP8 pathway and the induction of TAGLN by CM were
sensitive to inhibition of Alk4/5/7- and p38-signaling. In contrast, the
induction of the inflammatory markers PAI-1 and MCP-1 by CM as
well as the induction of SMA by CM was not fully reversed by Alk4/5/
7- and p38-inhibition, indicating that these effects involve at least in
part different pathways.

In contrast to classical target tissues for insulin action, like liver,
fat and muscle, the function of proper insulin action in the vasculature
is less well understood. Nevertheless, vascular smooth muscle cell
function is impaired in patients with type 2 diabetes [23]. In vitro, phys-
iological concentrations of insulin have been reported to stimulate the
autophosphorylation of the insulin receptor in vascular smooth muscle
cells [17,19,24,33,34]. Furthermore, insulin has been found to promote
glucose uptake through translocation of the insulin-regulated glucose
transported GLUT4 in vascular smooth muscle cells [15]. For these
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mean of 16 independent experiments using cells from 2 distinct donors and CM from 8 diffe
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in vitro studies, it remains to be investigated whether these effects can
be fully ascribed to activation of the insulin receptor or also to activation
of hybrid insulin receptor/insulin like growth factor 1 receptor. Yet,
studies using a vascular insulin receptor knock-out mouse have clearly
illustrated the physiological relevance of activation of the Akt2/eNOS-
pathway by insulin for vasorelaxation [9,30].

Whether an impaired insulin action in SMC also has detrimental ef-
fects on the progression of atherosclerosis is less well understood. One
study reported that the presence of high palmitate induces a “selective”
inhibition of insulin signaling in hVSMC with a profound abrogation of
insulin induced PI3K-activation, whereas the activation of the MAPK-
pathway is enhanced [5]. Additionally this study showed that the
increased activation of MAPK-signaling by insulin is involved in
hVSMC proliferation, migration, and inflammation [5]. Alternatively, in
advanced plaque progression, inflammation and insulin resistance
may promote apoptosis of SMC and therefore thinning of fibrous cap
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and causing plaque rupture [3]. Finally, insulin-stimulated eNOS-derived
NO production has important anti-inflammatory and anti-thrombotic
properties through inhibition of leucocyte adhesion, and limiting platelet
adhesion and aggregation, and reduced expression of plasminogen acti-
vator inhibitor-1 (PAI-1), a prothrombotic protein [21]. Furthermore, NO
has been shown to inhibit DNA synthesis, mitogenesis, and proliferation
of vascular smooth muscle cells [10,25,26]. Therefore, impaired insulin
signaling with reduced bioavailable NO may predispose vasculature to
hyper-inflammatory and thrombotic states.

The present study shows that CM directly impairs insulin action in
hVSMC via induction of miR-143 and subsequent downregulation
of ORP8. Although the mechanism via which ORP8 regulates insulin
action remains unclear, the induction of miR-143 is closely associated
with obesity and insulin resistance. Feedingmicewith a high-fat diet in-
creased the levels ofmiR-143 in adipose tissue [31], while bothmiR-143
andmiR-145 are upregulated in the liver ofmice fed alsowith a high-fat
diet [18]. Moreover in the liver, heart, skeletal muscle and pancreas
from db/db-mice, the expression ofmiR-143was increased as compared
to tissues isolated from wild type control animals. Liver specific knock
out of the miR-143/145-cluster protects against high-fat diet induced
insulin resistance and hepatic Akt-inhibition [18]. The authors of that
study further identified ORP8 as a direct miR-143 target, and showed
that a decrease in ORP8 protein abundance is responsible for the
abrogation of insulin action in the liver [18]. Finally, in cardiomyocytes
we recently reported that the induction of miR-143 by activin A secret-
ed from epicardial adipose tissue promotes insulin resistance via ORP8,
and that silencingmiR-143 expression protects cardiomyocytes against
the induction of insulin resistance [1].

The strong association of miR-143 with insulin resistance in
multiple tissues seems in contrast to the function ascribed to this
miRNA in SMC. In SMC, an anti-proliferative function has been reported
for the miR-143/145-cluster [8,22], and especially miR-145 has been
found to promote the differentiation to the quiescent contractile pheno-
type of SMC [22]. Here, CM also induced the expression of miR-145 in
quiescent differentiated hVSMC. Accordingly, this was accompanied
Fig. 7. Possible mechanism for CM-induced insulin resistance in hVSMC. Adipocyte-derived
phosphorylation. Especially the SMAD-independent Pathway through p38 leads to an upregu
resulting in impaired insulin-stimulatedAkt and eNOS phosphorylation. ALK: activin receptor-li
2, ORP8: oxysterol-binding protein-related protein 8.
by the induction of SMA, and TAGLN. In mice, miR-145 overexpression
reduces neo-intima formation after vascular injury, but paradoxically
miR-145 deficient mice show similar effects [6,37]. In humans,
levels of miR-145 are elevated in atherosclerotic plaques [7,28], and
were found to correlate with an unstable plaque phenotype [7]. Collec-
tively these findings not only point toward an important dual role for
the miR-143/145 in SMC homeostasis, but also indicate that further
studies toward the underlying mechanism(s) are clearly needed, such
as comparing the impact of CMondifferentiated versus undifferentiated
SMC and elucidation of the targets regulated by the miR-143/145-
cluster.

A limitation of the present study is that we could not identify the
factor in CM responsible for the induction of the miR-143/145-cluster.
In line with previous reports, the induction of miR-143/145 was sensi-
tive to inhibition of Alk4/5/7- and p38-signaling [1,22]. Previous studies
identified TGFβ and activin A as inducers of miR-143/145. However, the
levels of these factors as determined by enzyme-linked immunosorbent
assay were below the limit of detection in the CM used in the present
study. Consequently, one may speculate that other members of the
TGFβ superfamily, which consists of at least 23 members [32], elicit
the effects observed here. Alternatively, CM itself may induce the pro-
duction of factors promoting the induction of the miR-143/145-cluster
in an autocrine fashion. In this context, we could demonstrate that
CM enhance the expression of activin A in differentiated hVSMC by
1.7-fold (supplementary Fig. 2). Yet, it remains to be investigated
whether this is associated by the release of biologically relevant
amounts of activin A from hVSMC. Another limitation is that the CM
used in the present study was prepared from adipocytes isolated from
subcutaneous adipose tissue biopsies collected from healthy young fe-
males. In previous studies, we reported that the adipose tissue secretory
profile is affected by type 2 diabetes and different among various
adipose tissue depots [1,11,29]. Therefore, one may speculate that
conditionedmedia generated fromadipocytes fromdonorswith obesity
or type 2 diabetesmay exert amore detrimental impact on the determi-
nants of smooth muscle cell function examined in the present study.
factors belonging to the TGFβ-superfamily and binding to ALK induce SMAD2 and p38
lation of the miRNA 143/145 cluster. miR-143 is able to reduce the expression of ORP8
ke kinases, Ins: insulin, InsR: insulin receptor, TβR II: transforming growth factorβ receptor
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5. Conclusion

This study shows for the first time that adipocyte-derived factors
impair insulin signaling in hVSMC. The inhibition of insulin signaling
can be ascribed to the Alk4/5/7- and p38-dependent induction of
miR-143 (Fig. 7). This miRNA plays a pivotal role in the CM-induced
impairment of insulin-induced Akt/eNOS-signaling via downregulation
of ORP8. These data further highlight the involvement of adipokines in
the pathogenesis of cardiovascular complications in type 2 diabetes.
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