8 research outputs found

    Investigation of the DYRK1A Regulation by LZTS2-SIPA1L1 Complex

    Get PDF
    A region on chromosome 21, the Down Syndrome critical region (DSCR), is associated with major defects found in Down Syndrome, such as craniofacial malformations. DYRK1A is a gene found on chromosome 21 within the DSCR that encodes an enzyme, dual specificity tyrosine-phosphorylation-regulated kinase 1A. DYRK1A is known to phosphorylate many substrate proteins and is thought to be involved in tumor suppression, neurological development, cell cycle regulation, and aging. Recently, the Litovchick lab and others reported that DYRK1A also plays a role in the double-strand break repair of DNA, which could lead to mutations and tumorigenesis, if deregulated. The Litovchick lab is currently investigating novel interactions of DYRK1A, and their implications for cancer. One of these proteins, DCAF7, is already a well-known DYRK1A interacting partner. Another less characterized protein is LZTS2, also known as LAPSER1 or leucine-zipper tumor suppressor 2. LZTS2 is found to be deleted in many human tumors and is known to bind a signaling intermediate SIPA1L1.2 Our preliminary data show that LZTS2 may promote DYRK1A phosphorylation, thereby regulating DYRK1A kinase activity. We suspect that SIPA1L1 may be involved in this interaction and, as this complex is known to be involved in the WNT pathway that plays a role in both cancer and orofacial formation, To test this hypothesis, we started characterization of the DYRK1A-LZTS2 interaction using ectopic expressions of the full-length LZTS2 and DYRK1A as well as their fragments expressed in human T98G cells. We will further perform experiments investigating the physical binding and functional interactions between DCAF7, SIPA1L1, and the DYRK1A-LZTS2 complex.https://scholarscompass.vcu.edu/uresposters/1442/thumbnail.jp

    Inclusive heavy-flavour production at central and forward rapidity in Xe–Xe collisions at √sNN = 5.44 TeV

    No full text
    The first measurements of the production of muons and electrons from heavy-flavour hadron decays in Xe–Xe collisions at √sNN = 5.44 TeV, using the ALICE detector at the LHC, are reported. The measurement of the nuclear modification factor RAA is performed as a function of transverse momentum pT in several centrality classes at forward rapidity (2.5 < y < 4) and midrapidity (|y| < 0.8) for muons and electrons from heavy-flavour hadron decays, respectively. A suppression by a factor up to about 2.5 compared to the binary-scaled pp reference is observed in central collisions at both central and forward rapidities. The RAA of muons from heavy-flavour hadron decays is compared to previous measurements in Pb–Pb collisions at √sNN = 5.02 TeV. When the nuclear modification factors are compared in the centrality classes 0–10% for Xe–Xe collisions and 10–20% for Pb–Pb collisions, which have similar charged-particle multiplicity density, a similar suppression, with RAA ∼ 0.4 in the pT interval 4 < pT < 8 GeV/c, is observed. The comparison of the measured RAA values in the two collision systems brings new insights on the properties of the quark-gluon plasma by investigating the system-size and geometry dependence of medium-induced parton energy loss. The results of muons and electrons from heavy-flavour hadron decays provide new constraints to model calculations

    Jet fragmentation transverse momentum distributions in pp and p–Pb collisions at √sNN = 5.02 TeV

    No full text
    Jet fragmentation transverse momentum (jT) distributions are measured in proton-proton (pp) and proton-lead (p-Pb) collisions at sNN−−−√ = 5.02 TeV with the ALICE experiment at the LHC. Jets are reconstructed with the ALICE tracking detectors and electromagnetic calorimeter using the anti-kT algorithm with resolution parameter R=0.4 in the pseudorapidity range |η|<0.25. The jT values are calculated for charged particles inside a fixed cone with a radius R=0.4 around the reconstructed jet axis. The measured jT distributions are compared with a variety of parton-shower models. Herwig and PYTHIA 8 based models describe the data well for the higher jT region, while they underestimate the lower jT region. The jT distributions are further characterised by fitting them with a function composed of an inverse gamma function for higher jT values (called the "wide component"), related to the perturbative component of the fragmentation process, and with a Gaussian for lower jT values (called the "narrow component"), predominantly connected to the hadronisation process. The width of the Gaussian has only a weak dependence on jet transverse momentum, while that of the inverse gamma function increases with increasing jet transverse momentum. For the narrow component, the measured trends are successfully described by all models except for Herwig. For the wide component, Herwig and PYTHIA 8 based models slightly underestimate the data for the higher jet transverse momentum region. These measurements set constraints on models of jet fragmentation and hadronisation

    Λc+\Lambda^+_c production in pppp and in pp-Pb collisions at sNN\sqrt {s_{NN}}=5.02 TeV

    No full text
    International audienceThe production cross section of prompt Λc+\mathrm{\Lambda_{c}^{+}} charm baryons was measured with the ALICE detector at the LHC at midrapidity in proton-proton (pp) and proton-lead (p-Pb) collisions at a centre-of-mass energy per nucleon pair of sNN=5.02\sqrt{s_\mathrm{NN}} = 5.02 TeV. The Λc+\mathrm{\Lambda_{c}^{+}} and Λc\rm {\overline{\Lambda}{}_c^-} baryons were reconstructed in the hadronic decay channels Λc+pKπ+\rm \Lambda_{c}^{+} \rightarrow p K^{-}\pi^{+} and Λc+pKS0\rm \Lambda_{c}^{+}\to p K^{0}_{S} and respective charge conjugates. The measured differential cross sections as a function of transverse momentum (pTp_{\rm T}) and the pTp_{\rm T}-integrated Λc+\mathrm{\Lambda_{c}^{+}} production cross section in pp and in p-Pb collisions are presented. The Λc+\mathrm{\Lambda_{c}^{+}} nuclear modification factor (RpPbR_\mathrm{pPb}), calculated from the cross sections in pp and in p-Pb collisions, is presented and compared with the RpPbR_\mathrm{pPb} of D mesons. The Λc+/D0\mathrm {\Lambda_{c}^{+}}/\mathrm {D^0} ratio is also presented and compared with the light-flavour baryon-to-meson ratios p/π/\pi and Λ/KS0\Lambda /\mathrm {K^0_S}, and measurements from other LHC experiments. The results are compared to predictions from model calculations and Monte Carlo event generators

    Λ+c production in pp and in p–Pb collisions at √sNN = 5.02 TeV

    No full text
    The production cross section of prompt Λ+c charm baryons was measured with the ALICE detector at the LHC at midrapidity in proton-proton (pp) and proton-lead (p-Pb) collisions at a centre-of-mass energy per nucleon pair of sNN−−−√=5.02 TeV. The Λ+c and Λ¯¯¯¯−c baryons were reconstructed in the hadronic decay channels Λ+c→pK−π+ and Λ+c→pK0S and respective charge conjugates. The measured differential cross sections as a function of transverse momentum (pT) and the pT-integrated Λ+c production cross section in pp and in p-Pb collisions are presented. The Λ+c nuclear modification factor (RpPb), calculated from the cross sections in pp and in p-Pb collisions, is presented and compared with the RpPb of D mesons. The Λ+c/D0 ratio is also presented and compared with the light-flavour baryon-to-meson ratios p/π and Λ/K0S, and measurements from other LHC experiments. The results are compared to predictions from model calculations and Monte Carlo event generators

    Λ+c production and baryon-to-meson ratios in pp and p–Pb collisions at √sNN = 5.02 TeV at the LHC

    No full text
    The prompt production of the charmed baryon Λ+c and the Λ+c/D0 production ratios were measured at midrapidity with the ALICE detector in pp and p-Pb collisions at sNN−−−√=5.02TeV. These new measurements show a clear decrease of the Λ+c/D0 ratio with increasing transverse momentum (pT) in both collision systems in the range 2<pT<12 GeV/c, exhibiting similarities with the light-flavour baryon-to-meson ratios p/π and Λ/K0S. At low pT, predictions that include additional colour-reconnection mechanisms beyond the leading-colour approximation; assume the existence of additional higher-mass charmed-baryon states; or include hadronisation via coalescence can describe the data, while predictions driven by charm-quark fragmentation processes measured in e+e− and e−p collisions significantly underestimate the data. The results presented in this letter provide significant evidence that the established assumption of universality (colliding-system independence) of parton-to-hadron fragmentation is not sufficient to describe charmed-baryon production in hadronic collisions at LHC energies

    Direct observation of the dead-cone effect in quantum chromodynamics

    No full text
    At particle collider experiments, elementary particle interactions with large momentum transfer produce quarks and gluons (known as partons) whose evolution is governed by the strong force, as described by the theory of quantum chromodynamics (QCD) [1]. The vacuum is not transparent to the partons and induces gluon radiation and quark pair production in a process that can be described as a parton shower [2]. Studying the pattern of the parton shower is one of the key experimental tools in understanding the properties of QCD. This pattern is expected to depend on the mass of the initiating parton, through a phenomenon known as the dead-cone effect, which predicts a suppression of the gluon spectrum emitted by a heavy quark of mass m and energy E, within a cone of angular size m/E around the emitter [3]. A direct observation of the dead-cone effect in QCD has not been possible until now, due to the challenge of reconstructing the cascading quarks and gluons from the experimentally accessible bound hadronic states. Here we show the first direct observation of the QCD dead-cone by using new iterative declustering techniques [4, 5] to reconstruct the parton shower of charm quarks. This result confirms a fundamental feature of QCD, which is derived more generally from its origin as a gauge quantum field theory. Furthermore, the measurement of a dead-cone angle constitutes the first direct experimental observation of the non-zero mass of the charm quark, which is a fundamental constant in the standard model of particle physics.The direct measurement of the QCD dead cone in charm quark fragmentation is reported, using iterative declustering of jets tagged with a fully reconstructed charmed hadron.In particle collider experiments, elementary particle interactions with large momentum transfer produce quarks and gluons (known as partons) whose evolution is governed by the strong force, as described by the theory of quantum chromodynamics (QCD). These partons subsequently emit further partons in a process that can be described as a parton shower which culminates in the formation of detectable hadrons. Studying the pattern of the parton shower is one of the key experimental tools for testing QCD. This pattern is expected to depend on the mass of the initiating parton, through a phenomenon known as the dead-cone effect, which predicts a suppression of the gluon spectrum emitted by a heavy quark of mass mQm_{\rm{Q}} and energy EE, within a cone of angular size mQm_{\rm{Q}}/EE around the emitter. Previously, a direct observation of the dead-cone effect in QCD had not been possible, owing to the challenge of reconstructing the cascading quarks and gluons from the experimentally accessible hadrons. We report the direct observation of the QCD dead cone by using new iterative declustering techniques to reconstruct the parton shower of charm quarks. This result confirms a fundamental feature of QCD. Furthermore, the measurement of a dead-cone angle constitutes a direct experimental observation of the non-zero mass of the charm quark, which is a fundamental constant in the standard model of particle physics
    corecore