5 research outputs found

    Evidence for the linked biogeochemical cycling of zinc, cobalt, and phosphorus in the western North Atlantic Ocean

    Get PDF
    Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 22 (2008): GB4012, doi:10.1029/2007GB003119.Many trace metals such as iron, copper, and manganese have lower concentrations in the surface waters of the North Pacific Ocean than in North Atlantic surface waters. However, cobalt and zinc concentrations in North Atlantic surface waters are often as low as those reported in the North Pacific. We studied the relationship between the distribution of cobalt, zinc, and phosphorus in surface waters of the western North Atlantic Ocean. Both metals show strong depletion in the southern Sargasso Sea, a region characterized by exceedingly low dissolved inorganic phosphorus (generally <4 nmol L−1) and measurable alkaline phosphatase activity. Alkaline phosphatase is a metalloenzyme (typically containing zinc) that cleaves phosphate monoesters and is a diagnostic indicator of phosphorus stress in phytoplankton. In contrast to the North Pacific Ocean, cobalt and zinc appear to be drawn down to their lowest values only when inorganic phosphorus is below 10 nmol L−1 in the North Atlantic Ocean. Lower levels of phosphorus in the Atlantic may contribute to these differences, possibly through an increased biological demand for zinc and cobalt associated with dissolved organic phosphorus acquisition. This hypothesis is consistent with results of a culture study where alkaline phosphatase activity decreased in the model coccolithophore Emiliania huxleyi upon zinc and cobalt limitation.This research was supported by NSF grant OCE- 0136835 to J.W.M. and S.D. R.W.J. was supported by an EPA STAR Fellowship

    Dissolved zinc in the subarctic North Pacific and Bering Sea : its distribution, speciation, and importance to primary producers

    Get PDF
    Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 26 (2012): GB2015, doi:10.1029/2010GB004004.The eastern subarctic North Pacific, an area of high nutrients and low chlorophyll, has been studied with respect to the potential for iron to control primary production. The geochemistry of zinc, a critical micronutrient for diatoms, is less well characterized. Total zinc concentrations and zinc speciation were measured in near-surface waters on transects across the subarctic North Pacific and across the Bering Sea. Total dissolved zinc concentrations in the near-surface ranged from 0.10 nmol L−1 to 1.15 nmol L−1 with lowest concentrations in the eastern portions of both the North Pacific and Bering Sea. Dissolved zinc speciation was dominated by complexation to strong organic ligands whose concentration ranged from 1.1 to 3.6 nmol L−1 with conditional stability constants (K′ZnL/Zn′) ranging from 109.3 to 1011.0. The importance of zinc to primary producers was evaluated by comparison to phytoplankton pigment concentrations and by performing a shipboard incubation. Zinc concentrations were positively correlated with two pigments that are characteristic of diatoms. At one station in the North Pacific, the addition of 0.75 nmol L−1 zinc resulted in a doubling of chlorophyll after 4 days.This research was supported by NSF grant OCE-0136835 and by an EPA STAR Fellowship.2012-11-1
    corecore