46 research outputs found

    Adaptive Quantum Measurements of a Continuously Varying Phase

    Get PDF
    We analyze the problem of quantum-limited estimation of a stochastically varying phase of a continuous beam (rather than a pulse) of the electromagnetic field. We consider both non-adaptive and adaptive measurements, and both dyne detection (using a local oscillator) and interferometric detection. We take the phase variation to be \dot\phi = \sqrt{\kappa}\xi(t), where \xi(t) is \delta-correlated Gaussian noise. For a beam of power P, the important dimensionless parameter is N=P/\hbar\omega\kappa, the number of photons per coherence time. For the case of dyne detection, both continuous-wave (cw) coherent beams and cw (broadband) squeezed beams are considered. For a coherent beam a simple feedback scheme gives good results, with a phase variance \simeq N^{-1/2}/2. This is \sqrt{2} times smaller than that achievable by nonadaptive (heterodyne) detection. For a squeezed beam a more accurate feedback scheme gives a variance scaling as N^{-2/3}, compared to N^{-1/2} for heterodyne detection. For the case of interferometry only a coherent input into one port is considered. The locally optimal feedback scheme is identified, and it is shown to give a variance scaling as N^{-1/2}. It offers a significant improvement over nonadaptive interferometry only for N of order unity.Comment: 11 pages, 6 figures, journal versio

    Near-optimal two-mode spin squeezing via feedback

    Get PDF
    We propose a feedback scheme for the production of two-mode spin squeezing. We determine a general expression for the optimal feedback, which is also applicable to the case of single-mode spin squeezing. The two-mode spin squeezed states obtained via this feedback are optimal for j=1/2 and are very close to optimal for j>1/2. In addition, the master equation suggests a Hamiltonian that would produce two-mode spin squeezing without feedback, and is analogous to the two-axis countertwisting Hamiltonian in the single mode case.Comment: 10 pages, 6 figures, journal versio

    Nicotine up-regulates α4β2 nicotinic receptors and ER exit sites via stoichiometry-dependent chaperoning

    Get PDF
    The up-regulation of α4β2* nicotinic acetylcholine receptors (nAChRs) by chronic nicotine is a cell-delimited process and may be necessary and sufficient for the initial events of nicotine dependence. Clinical literature documents an inverse relationship between a person’s history of tobacco use and his or her susceptibility to Parkinson’s disease; this may also result from up-regulation. This study visualizes and quantifies the subcellular mechanisms involved in nicotine-induced nAChR up-regulation by using transfected fluorescent protein (FP)-tagged α4 nAChR subunits and an FP-tagged Sec24D endoplasmic reticulum (ER) exit site marker. Total internal reflection fluorescence microscopy shows that nicotine (0.1 µM for 48 h) up-regulates α4β2 nAChRs at the plasma membrane (PM), despite increasing the fraction of α4β2 nAChRs that remain in near-PM ER. Pixel-resolved normalized Förster resonance energy transfer microscopy between α4-FP subunits shows that nicotine stabilizes the (α4)2(β2)3 stoichiometry before the nAChRs reach the trans-Golgi apparatus. Nicotine also induces the formation of additional ER exit sites (ERES). To aid in the mechanistic analysis of these phenomena, we generated a β2enhanced-ER-export mutant subunit that mimics two regions of the β4 subunit sequence: the presence of an ER export motif and the absence of an ER retention/retrieval motif. The α4β2enhanced-ER-export nAChR resembles nicotine-exposed nAChRs with regard to stoichiometry, intracellular mobility, ERES enhancement, and PM localization. Nicotine produces only small additional PM up-regulation of α4β2enhanced-ER-export receptors. The experimental data are simulated with a model incorporating two mechanisms: (1) nicotine acts as a stabilizing pharmacological chaperone for nascent α4β2 nAChRs in the ER, eventually increasing PM receptors despite a bottleneck(s) in ER export; and (2) removal of the bottleneck (e.g., by expression of the β2enhanced-ER-export subunit) is sufficient to increase PM nAChR numbers, even without nicotine. The data also suggest that pharmacological chaperoning of nAChRs by nicotine can alter the physiology of ER processes

    The XMM Cluster Survey: Exploring scaling relations and completeness of the Dark Energy Survey Year 3 redMaPPer cluster catalogue

    Full text link
    We cross-match and compare characteristics of galaxy clusters identified in observations from two sky surveys using two completely different techniques. One sample is optically selected from the analysis of three years of Dark Energy Survey observations using the redMaPPer cluster detection algorithm. The second is X-ray selected from XMM observations analysed by the XMM Cluster Survey. The samples comprise a total area of 57.4 deg2^2, bounded by the area of 4 contiguous XMM survey regions that overlap the DES footprint. We find that the X-ray selected sample is fully matched with entries in the redMaPPer catalogue, above λ>\lambda>20 and within 0.1<z<< z <0.9. Conversely, only 38\% of the redMaPPer catalogue is matched to an X-ray extended source. Next, using 120 optically clusters and 184 X-ray selected clusters, we investigate the form of the X-ray luminosity-temperature (LXTXL_{X}-T_{X}), luminosity-richness (LXλL_{X}-\lambda) and temperature-richness (TXλT_{X}-\lambda) scaling relations. We find that the fitted forms of the LXTXL_{X}-T_{X} relations are consistent between the two selection methods and also with other studies in the literature. However, we find tentative evidence for a steepening of the slope of the relation for low richness systems in the X-ray selected sample. When considering the scaling of richness with X-ray properties, we again find consistency in the relations (i.e., LXλL_{X}-\lambda and TXλT_{X}-\lambda) between the optical and X-ray selected samples. This is contrary to previous similar works that find a significant increase in the scatter of the luminosity scaling relation for X-ray selected samples compared to optically selected samples.Comment: Accepted for publication to MNRA

    The first Hubble diagram and cosmological constraints using superluminous supernovae

    Get PDF
    This paper has gone through internal review by the DES collaboration. It has Fermilab preprint number 19-115-AE and DES publication number 13387. We acknowledge support from EU/FP7- ERC grant 615929. RCN would like to acknowledge support from STFC grant ST/N000688/1 and the Faculty of Technology at the University of Portsmouth. LG was funded by the European Union’s Horizon 2020 Framework Programme under the Marie Skłodowska- Curie grant agreement no. 839090. This work has been partially supported by the Spanish grant PGC2018-095317-B-C21 within the European Funds for Regional Development (FEDER). Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundac¸ ˜ao Carlos Chagas Filho de Amparo `a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cient´ıfico e Tecnol´ogico and the Minist´erio da Ciˆencia, Tecnologia e Inovac¸ ˜ao, the Deutsche Forschungsgemeinschaft, and the Collaborating Institutions in the Dark Energy Survey. The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energ´eticas, Medioambientales y Tecnol ´ogicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgen¨ossische Technische Hochschule (ETH) Z¨urich, Fermi NationalAccelerator Laboratory, theUniversity of Illinois atUrbana- Champaign, the Institut de Ci`encies de l’Espai (IEEC/CSIC), the Institut de F´ısica d’Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universit¨at M¨unchen and the associated Excellence Cluster Universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, Texas A&M University, and the OzDES Membership Consortium. Based in part on observations at Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. The DES data management system is supported by the National Science Foundation under grant numbers AST-1138766 and AST-1536171. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2015- 71825, ESP2015-66861, FPA2015-68048, SEV-2016-0588, SEV- 2016-0597, and MDM-2015-0509, some of which include ERDF funds from the European Union. IFAE is partially funded by the CERCA program of the Generalitat de Catalunya. Research leading to these results has received funding from the European Research Council under the European Union Seventh Framework Programme (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478.We acknowledge support from the Australian Research Council Centre of Excellence for All-skyAstrophysics (CAASTRO), through project number CE110001020, and the Brazilian Instituto Nacional de Ciˆencia e Tecnologia (INCT) e-Universe (CNPq grant 465376/2014-2). This paper has been authored by Fermi Research Alliance, LLC under Contract No.DE-AC02-07CH11359 with theU.S.Department of Energy, Office of Science, Office of High Energy Physics. The United States Government retains and the publisher, by accepting the paper for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this paper, or allow others to do so, for United States Government purposes.We present the first Hubble diagram of superluminous supernovae (SLSNe) out to a redshift of two, together with constraints on the matter density, M, and the dark energy equation-of-state parameter, w(≡p/ρ). We build a sample of 20 cosmologically useful SLSNe I based on light curve and spectroscopy quality cuts. We confirm the robustness of the peak–decline SLSN I standardization relation with a larger data set and improved fitting techniques than previous works. We then solve the SLSN model based on the above standardization via minimization of the χ2 computed from a covariance matrix that includes statistical and systematic uncertainties. For a spatially flat cold dark matter ( CDM) cosmological model, we find M = 0.38+0.24 −0.19, with an rms of 0.27 mag for the residuals of the distance moduli. For a w0waCDM cosmological model, the addition of SLSNe I to a ‘baseline’ measurement consisting of Planck temperature together with Type Ia supernovae, results in a small improvement in the constraints of w0 and wa of 4 per cent.We present simulations of future surveys with 868 and 492 SLSNe I (depending on the configuration used) and show that such a sample can deliver cosmological constraints in a flat CDM model with the same precision (considering only statistical uncertainties) as current surveys that use Type Ia supernovae, while providing a factor of 2–3 improvement in the precision of the constraints on the time variation of dark energy, w0 and wa. This paper represents the proof of concept for superluminous supernova cosmology, and demonstrates they can provide an independent test of cosmology in the high-redshift (z > 1) universe.EU/FP7-ERC grant 615929STFC grant ST/N000688/1Faculty of Technology at the University of PortsmouthEuropean Union’s Horizon 2020 Framework Programme under the Marie Skłodowska- Curie grant agreement no. 839090Spanish grant PGC2018-095317-B-C21 within the European Funds for Regional Development (FEDER)U.S. Department of EnergyU.S. National Science FoundationMinistry of Science and Education of SpainScience and Technology Facilities Council of the United KingdomHigher Education Funding Council for EnglandNational Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign,Kavli Institute of Cosmological Physics at the University of ChicagoCenter for Cosmology and Astro-Particle Physics at the Ohio State UniversityMitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundacão Carlos Chagas Filho de Amparo `a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico and the Ministério da Ciencia, Tecnologia e InovacãoDeutsche ForschungsgemeinschaftCollaborating Institutions in the Dark Energy Survey.National Science Foundation under grant numbers AST-1138766 and AST-1536171.T MINECO under grants AYA2015- 71825, ESP2015-66861, FPA2015-68048, SEV-2016-0588, SEV- 2016-0597, and MDM-2015-0509, some of which include ERDF funds from the European Union.CERCA program of the Generalitat de Catalunya.European Research Council under the European Union Seventh Framework Programme (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478.Australian Research Council Centre of Excellence for All-skyAstrophysics (CAASTRO), through project number CE110001020Brazilian Instituto Nacional de Ciˆencia e Tecnologia (INCT) e-Universe (CNPq grant 465376/2014-2)Fermi Research Alliance, LLC under Contract No.DE-AC02-07CH11359 with theU.S.Department of Energy, Office of Science, Office of High Energy Physic

    The Majorana Demonstrator readout electronics system

    Get PDF
    The Majorana Demonstrator comprises two arrays of high-purity germanium detectors constructed to search for neutrinoless double-beta decay in 76Ge and other physics beyond the Standard Model. Its readout electronics were designed to have low electronic noise, and radioactive backgrounds were minimized by using low-mass components and low-radioactivity materials near the detectors. This paper provides a description of all components of the Majorana Demonstrator readout electronics, spanning the front-end electronics and internal cabling, back-end electronics, digitizer, and power supplies, along with the grounding scheme. The spectroscopic performance achieved with these readout electronics is also demonstrated

    The first Hubble diagram and cosmological constraints using superluminous supernovae

    Get PDF
    We present the first Hubble diagram of superluminous supernovae (SLSNe) out to a redshift of two, together with constraints on the matter density, ΩM, and the dark energy equation-of-state parameter, w(≡p/ρ). We build a sample of 20 cosmologically useful SLSNe I based on light curve and spectroscopy quality cuts. We confirm the robustness of the peak–decline SLSN I standardization relation with a larger data set and improved fitting techniques than previous works. We then solve the SLSN model based on the above standardization via minimization of the χ2 computed from a covariance matrix that includes statistical and systematic uncertainties. For a spatially flat Λ cold dark matter (ΛCDM) cosmological model, we find ΩM=0.38+0.24−0.19⁠, with an rms of 0.27 mag for the residuals of the distance moduli. For a w0waCDM cosmological model, the addition of SLSNe I to a ‘baseline’ measurement consisting of Planck temperature together with Type Ia supernovae, results in a small improvement in the constraints of w0 and wa of 4 per cent. We present simulations of future surveys with 868 and 492 SLSNe I (depending on the configuration used) and show that such a sample can deliver cosmological constraints in a flat ΛCDM model with the same precision (considering only statistical uncertainties) as current surveys that use Type Ia supernovae, while providing a factor of 2–3 improvement in the precision of the constraints on the time variation of dark energy, w0 and wa. This paper represents the proof of concept for superluminous supernova cosmology, and demonstrates they can provide an independent test of cosmology in the high-redshift (z > 1) universe.</p

    Adaptive optical phase estimation

    No full text
    We experimentally performed adaptive phase estimation using time-symmetric quantum smoothing for a stochastically varying phase on continuous wave coherent beam. We demonstrate better accuracy than conventional methods
    corecore