481 research outputs found

    Coherent vs incoherent interlayer transport in layered metals

    Get PDF
    The magnetic-field, temperature, and angular dependence of the interlayer magnetoresistance of two different quasi-two-dimensional (2D) organic superconductors is reported. For κ\kappa-(BEDT-TTF)2_2I3_3 we find a well-resolved peak in the angle-dependent magnetoresistance at Θ=90\Theta = 90^\circ (field parallel to the layers). This clear-cut proof for the coherent nature of the interlayer transport is absent for β\beta''-(BEDT-TTF)2_2SF5_5CH2_2CF2_2SO3_3. This and the non-metallic behavior of the magnetoresistance suggest an incoherent quasiparticle motion for the latter 2D metal.Comment: 4 pages, 4 figures. Phys. Rev. B, in pres

    Quantum phase transition in the spin boson model

    Full text link
    In this paper we give a general introduction to quantum critical phenomena, which we practically illustrate by a detailed study of the low energy properties of the spin boson model (SBM), describing the dynamics of a spin 1/2 impurity (or more generically a two-level system) coupled to a bath of independent harmonic oscillators. We show that the behavior of the model is very sensitive to the bath spectrum, in particular how the properties of the quantum critical point in the SBM are affected by the functional form of the bath Density of States (DoS). To this effect, we review the renormalization group (RG) treatment of the SBM for various bath DoS, based on an unconventional Majorana representation of the spin 1/2 degree of freedom. We also discuss the derivation of Shiba's relation for the sub-ohmic SBM, and explicitely derive an effective action vindicating the quantum to classical mapping.Comment: Introductory book chapter. 18 pages, 8 figure

    An overview of research activities and achievement in Geotechnics from the Scottish Universities Geotechnics Network (SUGN)

    Get PDF
    ABSTRACT: Design of geotechnical systems is often challenging as it requires the understanding of complex soil behaviour and its influence on field-scale performance of geo-structures. To advance the scientific knowledge and the technological development in geotechnical engineering, a Scottish academic community, named Scottish Universities Geotechnics Network (SUGN), was established in 2001, composing of eight higher education institutions. The network gathers geotechnics researchers, including experimentalists as well as centrifuge, constitutive, and numerical modellers, to generate multiple synergies for building larger collaboration and wider research dissemination in and beyond Scotland. The paper will highlight the research excellence and leading work undertaken in SUGN emphasising some of the contribution to the geotechnical research community and some of the significant research outcomes. RÉSUMÉ: Conception de systèmes géotechniques est souvent difficile car elle nécessite la compréhension du comportement des sols complexes et son influence sur la performance échelle du champ de géo-structures. Pour faire avancer la connaissance scientifique et le développement technologique en ingénierie géotechnique, une communauté universitaire écossais, nommé écossais universités Géotechnique réseau (SUGN), a été créé en 2001, la composition des huit établissements d'enseignement supérieur. Le réseau réunit géotechnique chercheurs, y compris les expérimentateurs ainsi que centrifugeuse, constitutif, et les modélisateurs numériques, de générer des synergies multiples pour la construction de plus grande collaboration et une plus large diffusion de la recherche en Ecosse et au-delà. Le document mettra l'accent sur l'excellence de la recherche et de diriger le travail entrepris dans SUGN soulignant certains de la contribution à la communauté de recherche en géotechnique et certains des résultats importants de la recherche

    Infrastructure for Detector Research and Development towards the International Linear Collider

    Full text link
    The EUDET-project was launched to create an infrastructure for developing and testing new and advanced detector technologies to be used at a future linear collider. The aim was to make possible experimentation and analysis of data for institutes, which otherwise could not be realized due to lack of resources. The infrastructure comprised an analysis and software network, and instrumentation infrastructures for tracking detectors as well as for calorimetry.Comment: 54 pages, 48 picture

    The Science of Sungrazers, Sunskirters, and Other Near-Sun Comets

    Get PDF
    This review addresses our current understanding of comets that venture close to the Sun, and are hence exposed to much more extreme conditions than comets that are typically studied from Earth. The extreme solar heating and plasma environments that these objects encounter change many aspects of their behaviour, thus yielding valuable information on both the comets themselves that complements other data we have on primitive solar system bodies, as well as on the near-solar environment which they traverse. We propose clear definitions for these comets: We use the term near-Sun comets to encompass all objects that pass sunward of the perihelion distance of planet Mercury (0.307 AU). Sunskirters are defined as objects that pass within 33 solar radii of the Sun’s centre, equal to half of Mercury’s perihelion distance, and the commonly-used phrase sungrazers to be objects that reach perihelion within 3.45 solar radii, i.e. the fluid Roche limit. Finally, comets with orbits that intersect the solar photosphere are termed sundivers. We summarize past studies of these objects, as well as the instruments and facilities used to study them, including space-based platforms that have led to a recent revolution in the quantity and quality of relevant observations. Relevant comet populations are described, including the Kreutz, Marsden, Kracht, and Meyer groups, near-Sun asteroids, and a brief discussion of their origins. The importance of light curves and the clues they provide on cometary composition are emphasized, together with what information has been gleaned about nucleus parameters, including the sizes and masses of objects and their families, and their tensile strengths. The physical processes occurring at these objects are considered in some detail, including the disruption of nuclei, sublimation, and ionisation, and we consider the mass, momentum, and energy loss of comets in the corona and those that venture to lower altitudes. The different components of comae and tails are described, including dust, neutral and ionised gases, their chemical reactions, and their contributions to the near-Sun environment. Comet-solar wind interactions are discussed, including the use of comets as probes of solar wind and coronal conditions in their vicinities. We address the relevance of work on comets near the Sun to similar objects orbiting other stars, and conclude with a discussion of future directions for the field and the planned ground- and space-based facilities that will allow us to address those science topics

    Low Q^2 Jet Production at HERA and Virtual Photon Structure

    Get PDF
    The transition between photoproduction and deep-inelastic scattering is investigated in jet production at the HERA ep collider, using data collected by the H1 experiment. Measurements of the differential inclusive jet cross-sections dsigep/dEt* and dsigmep/deta*, where Et* and eta* are the transverse energy and the pseudorapidity of the jets in the virtual photon-proton centre of mass frame, are presented for 0 < Q2 < 49 GeV2 and 0.3 < y < 0.6. The interpretation of the results in terms of the structure of the virtual photon is discussed. The data are best described by QCD calculations which include a partonic structure of the virtual photon that evolves with Q2.Comment: 20 pages, 5 Figure

    Energy Flow in the Hadronic Final State of Diffractive and Non-Diffractive Deep-Inelastic Scattering at HERA

    Get PDF
    An investigation of the hadronic final state in diffractive and non--diffractive deep--inelastic electron--proton scattering at HERA is presented, where diffractive data are selected experimentally by demanding a large gap in pseudo --rapidity around the proton remnant direction. The transverse energy flow in the hadronic final state is evaluated using a set of estimators which quantify topological properties. Using available Monte Carlo QCD calculations, it is demonstrated that the final state in diffractive DIS exhibits the features expected if the interaction is interpreted as the scattering of an electron off a current quark with associated effects of perturbative QCD. A model in which deep--inelastic diffraction is taken to be the exchange of a pomeron with partonic structure is found to reproduce the measurements well. Models for deep--inelastic epep scattering, in which a sizeable diffractive contribution is present because of non--perturbative effects in the production of the hadronic final state, reproduce the general tendencies of the data but in all give a worse description.Comment: 22 pages, latex, 6 Figures appended as uuencoded fil

    A Search for Selectrons and Squarks at HERA

    Get PDF
    Data from electron-proton collisions at a center-of-mass energy of 300 GeV are used for a search for selectrons and squarks within the framework of the minimal supersymmetric model. The decays of selectrons and squarks into the lightest supersymmetric particle lead to final states with an electron and hadrons accompanied by large missing energy and transverse momentum. No signal is found and new bounds on the existence of these particles are derived. At 95% confidence level the excluded region extends to 65 GeV for selectron and squark masses, and to 40 GeV for the mass of the lightest supersymmetric particle.Comment: 13 pages, latex, 6 Figure

    Pricing multiple exercise American options by linear programming

    Get PDF
    We consider the problem of computing the lower hedging price of American options of the call and put type written on a non-dividend paying stock in a non-recombinant tree model with multiple exercise rights. We prove using a simple argument that an optimal exercise policy for an option with h exercise rights is to delay exercise until the last h periods. The result implies that the mixedinteger programming model for computing the lower hedging price and the optimal exercise and hedging policy has a linear programming relaxation that is exact, i.e., the relaxation admits an optimal solution where all variables required to be integral have integer values. © Springer International Publishing Switzerland 2017

    A Pre-Landing Assessment of Regolith Properties at the InSight Landing Site

    Get PDF
    This article discusses relevant physical properties of the regolith at the Mars InSight landing site as understood prior to landing of the spacecraft. InSight will land in the northern lowland plains of Mars, close to the equator, where the regolith is estimated to be ≥3--5 m thick. These investigations of physical properties have relied on data collected from Mars orbital measurements, previously collected lander and rover data, results of studies of data and samples from Apollo lunar missions, laboratory measurements on regolith simulants, and theoretical studies. The investigations include changes in properties with depth and temperature. Mechanical properties investigated include density, grain-size distribution, cohesion, and angle of internal friction. Thermophysical properties include thermal inertia, surface emissivity and albedo, thermal conductivity and diffusivity, and specific heat. Regolith elastic properties not only include parameters that control seismic wave velocities in the immediate vicinity of the Insight lander but also coupling of the lander and other potential noise sources to the InSight broadband seismometer. The related properties include Poisson’s ratio, P- and S-wave velocities, Young’s modulus, and seismic attenuation. Finally, mass diffusivity was investigated to estimate gas movements in the regolith driven by atmospheric pressure changes. Physical properties presented here are all to some degree speculative. However, they form a basis for interpretation of the early data to be returned from the InSight mission.Additional co-authors: Nick Teanby and Sharon Keda
    corecore