741 research outputs found
De uittrekmogelijkheden voor schieraal via de Haringvlietsluizen
Schieraal die vanuit het Haringvliet naar zee wil trekken wordt potentieel belemmerd door de Haringvlietdam, omdat de spuisluizen in deze dam slechts gedurende een deel van de tijd open staan en alleen dan vrije migratie naar zee toestaan. In opdracht van het Ministerie van Landbouw, Natuur en Voedselveiligheid, Directie Agroketens en Visserij (LNV-AKV) worden in deze rapportage de uittrekmogelijkheden van schieraal vanuit het Haringvliet via de spuisluizen onderzocht aan de hand van bestaande gegevensbestanden
A study of the porosity of nuclear graphite using small-angle neutron scattering
Small angle neutron scattering (SANS) measures porosity in nuclear graphites, including both open pores, caused by escaping decomposition gases, and internal cracks (in coke particles) generated by anisotropic thermal contraction along the c-direction (Mrozowski Cracks). Porosity changes on the length scale observable by SANS must control the development of internal stresses and hence of cracking in AGR graphite due to irradiation (both fast neutron displacements of carbon atoms and radiolytic corrosion by CO2). Such cracking may cause premature reactor shutdown. SANS measurements show that porosity is fractal on a length scale between ~0.2-300 nm, presumably due to Mrozowski cracks – because the fractal index of the SANS signal depends only on the porosity of the graphitic filler. We report here two novel uses of the SANS technique as applied to reactor graphite – contrast matching with D-toluene (to measure the fraction of the porosity open to the surface) and the temperature dependence of the scattering (to measure pore width changes up to 2000 °C). These results provide important new information on AGR graphite porosity and its evolution during irradiation
On the Treatment of Neutrino Oscillations Without Resort to Weak Eigenstates
We discuss neutrino oscillations in the framework of the quantum field theory
without introducing the concept of neutrino weak eigenstates. The external
particles are described by wave packets and the different mass eigenstate
neutrinos propagate between the production and detection interactions, which
are macroscopically localized in space-time. The time-averaged cross section,
which is the measurable quantity in the usual experimental setting, is
calculated. It is shown that only in the extremely relativistic limit the usual
quantum mechanical oscillation probability can be factored out of the cross
section.Comment: LaTeX-18pages, JHU-TIPAC-930011,DFTT 22/9
The use of small angle neutron scattering with contrast matching and variable adsorbate partial pressures in the study of porosity in activated carbons
The porosity of a typical activated carbon is investigated with small angle neutron scattering (SANS), using the contrast matching technique, by changing the hydrogen/deuterium content of the absorbed liquid (toluene) to extract the carbon density at different scattering vector (Q) values and by measuring the p/p0 dependence of the SANS, using fully deuterated toluene. The contrast matching data shows that the apparent density is Q-dependent, either because of pores opening near the carbon surface during the activation processor or changes in D-toluene density in nanoscale pores. For each p/p0 value, evaluation of the Porod Invariant yields the fraction of empty pores. Hence, comparison with the adsorption isotherm shows that the fully dry powder undergoes densification when liquid is added. An algebraic function is developed to fit the SANS signal at each p/p0 value hence yielding the effective Kelvin radii of the liquid surfaces as a function of p/p0. These values, when compared with the Kelvin Equation, show that the resultant surface tension value is accurate for the larger pores but tends to increase for small (nanoscale) pores. The resultant pore size distribution is less model-dependent than for the traditional methods of analyzing the adsorption isotherms
Neutrino Oscillations in the Framework of Three-Generation Mixings with Mass Hierarchy
We have analyzed the results of reactor and accelerator neutrino oscillation
experiments in the framework of a general model with mixing of three neutrino
fields and a neutrino mass hierarchy that can accommodate the results of the
solar neutrino experiments. It is shown that
oscillations with and amplitude
larger than are not compatible with the existing limits on
neutrino oscillations if the non-diagonal elements of the mixing matrix and are small. Thus, if the
excess of electron events recently observed in the LSND experiment is due to oscillations, the mixing in the lepton sector
is basically different from the CKM mixing of quarks. If this type of mixing is
realized in nature, the observation of
oscillations would not influence
oscillations that are being searched for in the CHORUS and NOMAD experiments.Comment: Revtex file, 13 pages + 2 figures (included). The postscript file of
text and figures is available at
http://www.to.infn.it/teorici/giunti/papers.html or
ftp://ftp.to.infn.it/pub/giunti/1995/dftt-25-95/dftt-25-95.ps.
Measuring children’s involvement as an indicator of curriculum effectiveness : a curriculum evaluation of a selected child study centre in Singapore
This paper presents one aspect of a research project evaluating a curriculum model of a selected child study centre in Singapore. An issue of worldwide interest and concern is the ‘quality of learning’ debate as it relates to early childhood centres. In Singapore, the government is focusing on expansion in child care settings and increases in the amount of funded training. One of the issues surrounding prior-to-school education raises the question of how one measures the quality of teaching and learning, to describe the value of using, funding and promoting early education. The research reported in this study used a quasi experimental research paradigm to assess one aspect of the quality of a curriculum programme in a child study centre in Singapore. Children aged between 18 months and 6 years (N = 81) participated in the research. Using the observation scale of Laevers’ Child Involvement Scale, the active involvement of children in learning experiences was measured. The findings are presented and discussed
Tests of CPT Invariance at Neutrino Factories
We investigate possible tests of CPT invariance on the level of event rates
at neutrino factories. We do not assume any specific model but phenomenological
differences in the neutrino-antineutrino masses and mixing angles in a Lorentz
invariance preserving context, such as it could be induced by physics beyond
the Standard Model. We especially focus on the muon neutrino and antineutrino
disappearance channels in order to obtain constraints on the
neutrino-antineutrino mass and mixing angle differences; we found, for example,
that the sensitivity
could be achieved.Comment: 6 pages, 1 figure, RevTeX4. Final version to be published in Phys.
Rev.
Antarctic ice sheet discharge driven by atmosphere-ocean feedbacks at the Last Glacial Termination
Reconstructing the dynamic response of the Antarctic ice sheets to warming during the Last Glacial Termination (LGT; 18,000–11,650 yrs ago) allows us to disentangle ice-climate feedbacks that are key to improving future projections. Whilst the sequence of events during this period is reasonably well-known, relatively poor chronological control has precluded precise alignment of ice, atmospheric and marine records, making it difficult to assess relationships between Antarctic ice-sheet (AIS) dynamics, climate change and sea level. Here we present results from a highly-resolved ‘horizontal ice core’ from the Weddell Sea Embayment, which records millennial-scale AIS dynamics across this extensive region. Counterintuitively, we find AIS mass-loss across the full duration of the Antarctic Cold Reversal (ACR; 14,600–12,700 yrs ago), with stabilisation during the subsequent millennia of atmospheric warming. Earth-system and ice-sheet modelling suggests these contrasting trends were likely Antarctic-wide, sustained by feedbacks amplified by the delivery of Circumpolar Deep Water onto the continental shelf. Given the anti-phase relationship between inter-hemispheric climate trends across the LGT our findings demonstrate that Southern Ocean-AIS feedbacks were controlled by global atmospheric teleconnections. With increasing stratification of the Southern Ocean and intensification of mid-latitude westerly winds today, such teleconnections could amplify AIS mass loss and accelerate global sea-level rise
A Search for Selectrons and Squarks at HERA
Data from electron-proton collisions at a center-of-mass energy of 300 GeV
are used for a search for selectrons and squarks within the framework of the
minimal supersymmetric model. The decays of selectrons and squarks into the
lightest supersymmetric particle lead to final states with an electron and
hadrons accompanied by large missing energy and transverse momentum. No signal
is found and new bounds on the existence of these particles are derived. At 95%
confidence level the excluded region extends to 65 GeV for selectron and squark
masses, and to 40 GeV for the mass of the lightest supersymmetric particle.Comment: 13 pages, latex, 6 Figure
Energy Flow in the Hadronic Final State of Diffractive and Non-Diffractive Deep-Inelastic Scattering at HERA
An investigation of the hadronic final state in diffractive and
non--diffractive deep--inelastic electron--proton scattering at HERA is
presented, where diffractive data are selected experimentally by demanding a
large gap in pseudo --rapidity around the proton remnant direction. The
transverse energy flow in the hadronic final state is evaluated using a set of
estimators which quantify topological properties. Using available Monte Carlo
QCD calculations, it is demonstrated that the final state in diffractive DIS
exhibits the features expected if the interaction is interpreted as the
scattering of an electron off a current quark with associated effects of
perturbative QCD. A model in which deep--inelastic diffraction is taken to be
the exchange of a pomeron with partonic structure is found to reproduce the
measurements well. Models for deep--inelastic scattering, in which a
sizeable diffractive contribution is present because of non--perturbative
effects in the production of the hadronic final state, reproduce the general
tendencies of the data but in all give a worse description.Comment: 22 pages, latex, 6 Figures appended as uuencoded fil
- …
